Publications

Found 164 publications

2025

2025
cited5

AIMNet2-rxn: A Machine Learned Potential for Generalized Reaction Modeling on a Millions-of-Pathways Scale

Anstine D. M., Zhao Q., Zubatiuk R., Zhang S., Singla V., Nikitin F., Savoie B. M., Isayev O.

(2025)

Reactions Reactivity
Ml Potentials
Quantum Chemistry

AIMNet2-rxn is a machine-learned interatomic potential trained on 4.7 10^6 range-separated DFT calculations that accelerates reaction modeling by about six orders of magnitude while retaining approximately 1–2 kcal/mol accuracy along reaction coordinates. By leveraging three‑dimensional chemical information and a batched nudged elastic band (BNEB) method, the model searches millions of reaction pathways and enables high‑throughput mechanistic analysis for complex transformations such as glucose pyrolysis.

DOI
2025
cited3

Transferable Machine Learning Interatomic Potential for Pd-Catalyzed Cross-Coupling Reactions

Anstine D., Zubatyuk R., Gallegos L., Paton R., Wiest O., Nebgen B., Jones T., Gomes G., Tretiak S., Isayev O.

(2025)

Ml Potentials
Reactions Reactivity
Experiment Automation
Materials Informatics

Finding efficient substrate-catalyst combinations for palladium-catalyzed cross-coupling reactions remains a critical challenge in synthetic chemistry, with broad implications for pharmaceutical and materials manufacturing.

DOI
2025
cited47

AIMNet2: a neural network potential to meet your neutral, charged, organic, and elemental-organic needs

Anstine D. M., Zubatyuk R., Isayev O.

Chemical Science, 16, 10228–10244 (2025)

Ml Potentials

Machine learned interatomic potentials (MLIPs) are reshaping computational chemistry practices because of their ability to drastically exceed the accuracy-length/time scale tradeoff.

DOI
2025

All That Glitters Is Not Gold: Importance of Rigorous Evaluation of Proteochemometric Models

Avdiunina P., Jamal S., Gusev F., Isayev O.

Journal of Chemical Information and Modeling, 65, 10239–10252 (2025)

All That Glitters Is Not Gold: Importance of Rigorous Evaluation of Proteochemometric Models.

DOI
2025

All that glitters is not gold: Importance of rigorous evaluation of proteochemometric models

Avdiunina P., Jamal S., Gusev F., Isayev O.

(2025)

Drug Discovery

Proteochemometric models (PCM) are used in computational drug discovery to leverage both protein and ligand representations for bioactivity prediction.

DOI
2025

Democratizing Reaction Kinetics through Machine Vision and Learning

Baumer M., Gallegos L., Anstine D., Kubaney A., Regio J., Isayev O., Bernhard S., Gomes G.

(2025)

Reactions Reactivity
Ml Potentials

Democratizing Reaction Kinetics through Machine Vision and Learning.

DOI
2025
cited1

Anticipating the Selectivity of Intramolecular Cyclization Reaction Pathways with Neural Network Potentials

Casetti N., Anstine D., Isayev O., Coley C. W.

Journal of Chemical Theory and Computation, 21, 10362–10372 (2025)

Reactions Reactivity

Anticipating the Selectivity of Intramolecular Cyclization Reaction Pathways with Neural Network Potentials.

DOI
2025

AIQM3: Targeting Coupled-Cluster Accuracy with Semi-Empirical Speed Across Seven Main Group Elements

Chen Y., Hou Y., Zubatyuk R., Isayev O., Dral P. O.

(2025)

Quantum Chemistry
Ml Potentials
Drug Discovery

The AIQM series methods are successful neural network-based models that target coupled-cluster accuracy while maintaining high robustness and transferability across various tasks by leveraging Δ-learning.

DOI
2025

Proto-Yield: An Uncertainty-Aware Prototype Network for Yield Prediction in Real-world Chemical Reactions

Guo K., Liu Z., Guo Z., Nan B., Isayev O., Chawla N., Wiest O., Zhang X.

, 791–801 (2025)

Reactions Reactivity

Proto-Yield: An Uncertainty-Aware Prototype Network for Yield Prediction in Real-world Chemical Reactions.

DOI
2025
cited2

Machine Learning anomaly detection of automated HPLC experiments in the Cloud Laboratory

Gusev F., Kline B. C., Quinn R., Xu A., Smith B., Frezza B., Isayev O.

(2025)

Experiment Automation

Automation of experiments in cloud laboratories promises to revolutionize scientific research by enabling remote experimentation and improving reproducibility.

DOI
2025

Machine learning anomaly detection of automated HPLC experiments in the cloud laboratory

Gusev F., Kline B. C., Quinn R., Xu A., Smith B., Frezza B., Isayev O.

Digital Discovery, 4, 3445–3454 (2025)

Experiment Automation

Autonomous experiments are vulnerable to unforeseen adverse events.

DOI
2025

Machine learning interatomic potentials at the centennial crossroads of quantum mechanics

Kalita B., Gokcan H., Isayev O.

Nature Computational Science, 5, 1120–1132 (2025)

Ml Potentials

Machine learning interatomic potentials at the centennial crossroads of quantum mechanics.

DOI
2025
cited1

AIMNet2‐NSE: A Transferable Reactive Neural Network Potential for Open‐Shell Chemistry

Kalita B., Zubatyuk R., Anstine D. M., Bergeler M., Settels V., Stork C., Spicher S., Isayev O.

Angewandte Chemie International Edition (2025)

Ml Potentials
Quantum Chemistry
Reactions Reactivity

Abstract Open‐shell systems such as radical intermediates are central to radical polymerization (RP), combustion, catalysis, and many other chemical and industrial processes, yet their accurate modeling presents significant computational challenges.

DOI
2025

AIMNet2‐NSE: A Transferable Reactive Neural Network Potential for Open‐Shell Chemistry

Kalita B., Zubatyuk R., Anstine D. M., Bergeler M., Settels V., Stork C., Spicher S., Isayev O.

Angewandte Chemie (2025)

Ml Potentials
Quantum Chemistry
Reactions Reactivity

Abstract Open‐shell systems such as radical intermediates are central to radical polymerization (RP), combustion, catalysis, and many other chemical and industrial processes, yet their accurate modeling presents significant computational challenges.

DOI
2025

Fast and Accurate Ring Strain Energy Predictions with Machine Learning and Application in Strain-Promoted Reactions

Liu Z., Vinskus J., Fu Y., Liu P., Noonan K. J. T., Isayev O.

JACS Au, 5, 4750–4761 (2025)

Fast and Accurate Ring Strain Energy Predictions with Machine Learning and Application in Strain-Promoted Reactions.

DOI
2025
cited2

Efficient Molecular Crystal Structure Prediction and Stability Assessment with AIMNet2 Neural Network Potentials

Nayal K. S., O’Connor D., Zubatyuk R., Anstine D. M., Yang Y., Tom R., Deng W., Tang K., Marom N., Isayev O.

Crystal Growth & Design, 25, 9092–9106 (2025)

Ml Potentials

Efficient Molecular Crystal Structure Prediction and Stability Assessment with AIMNet2 Neural Network Potentials.

DOI
2025

Scalable Low-Energy Molecular Conformer Generation with Quantum Mechanical Accuracy

Nikitin F., Anstine D. M., Zubatyuk R., Paliwal S. G., Isayev O.

(2025)

Ml Potentials
Generative Ai
Drug Discovery

Molecular geometry is crucial for biological activity and chemical reactivity; however, computational methods for generating 3D structures are limited by the vast scale of conformational space and the complexities of stereochemistry.

DOI
2025
cited4

GEOM-drugs revisited: toward more chemically accurate benchmarks for 3D molecule generation

Nikitin F., Dunn I., Koes D. R., Isayev O.

Digital Discovery, 4, 3282–3291 (2025)

Generative Ai

Revisiting GEOM drugs: corrected metrics and novel energy-based structural benchmark enable rigorous evaluation of 3D molecule generative models.

DOI
2025

Design of Tough 3D Printable Elastomers with Human‐in‐the‐Loop Reinforcement Learning

Rapp J. L., Anstine D. M., Gusev F., Nikitin F., Yun K. H., Borden M. A., Bhat V., Isayev O., Leibfarth F. A.

Angewandte Chemie, 137 (2025)

Materials Informatics
Experiment Automation

Abstract The development of high‐performance elastomers for additive manufacturing requires overcoming complex property trade‐offs that challenge conventional material discovery pipelines.

DOI
2025

Design of Tough 3D Printable Elastomers with Human‐in‐the‐Loop Reinforcement Learning

Rapp J. L., Anstine D. M., Gusev F., Nikitin F., Yun K. H., Borden M. A., Bhat V., Isayev O., Leibfarth F. A.

Angewandte Chemie International Edition, 64 (2025)

Materials Informatics
Experiment Automation

Abstract The development of high‐performance elastomers for additive manufacturing requires overcoming complex property trade‐offs that challenge conventional material discovery pipelines.

DOI
2025

Machine Learning-Accelerated Screening of Hydroquinone Analogs for Proton-Coupled Electron Transfer

Sarma R., Wang Y., Hebert D., Tran E., Shao C., Fu S., Cho I., Isayev O., Garcia-Bosch I.

(2025)

Ml Potentials
Quantum Chemistry
Reactions Reactivity

Proton-coupled electron transfer (PCET) mediated by hydroquinone and related molecules is key to natural and artificial energy conversion.

DOI
2025
cited10

ANI-1xBB: An ANI-Based Reactive Potential for Small Organic Molecules

Zhang S., Zubatyuk R., Yang Y., Roitberg A., Isayev O.

Journal of Chemical Theory and Computation, 21, 4365–4374 (2025)

ANI-1xBB: An ANI-Based Reactive Potential for Small Organic Molecules.

DOI
2025
cited4

Including Physics-Informed Atomization Constraints in Neural Networks for Reactive Chemistry

Zhang S., Chigaev M., Isayev O., Messerly R. A., Lubbers N.

Journal of Chemical Information and Modeling, 65, 4367–4380 (2025)

Including Physics-Informed Atomization Constraints in Neural Networks for Reactive Chemistry.

DOI
2025

Discovery of Novel Celecoxib Polymorphs Using AIMNet2 Machine Learning Interatomic Potential

Zheng P., Abramov Y., Sun C. C., Isayev O.

(2025)

Ml Potentials
Experiment Automation
Drug Discovery
Materials Informatics

Polymorphism plays a pivotal role in defining the solid-state properties of pharmaceutical compounds, yet the discovery and accurate energy ranking of polymorphs remain a challenge.

DOI
2025

High-throughput electronic property prediction of cyclic molecules with 3D-enhanced machine learning

Zheng P., Isayev O.

Chemical Science, 16, 20553–20563 (2025)

Ring Vault contains 201 546 cyclic molecules across 11 elements.

DOI

2024

2024
cited17

AIMNet2: A Neural Network Potential to Meet your Neutral, Charged, Organic, and Elemental-Organic Needs

Anstine D., Zubatyuk R., Isayev O.

(2024)

Ml Potentials
Quantum Chemistry

Machine learned interatomic potentials (MLIPs) are reshaping computational chemistry practices because of their ability to drastically exceed the accuracy-length/time scale tradeoff.

DOI
2024
cited17

AIMNet2: A Neural Network Potential to Meet your Neutral, Charged, Organic, and Elemental-Organic Needs

Anstine D., Zubatyuk R., Isayev O.

(2024)

Ml Potentials

Machine learned interatomic potentials (MLIPs) are reshaping computational chemistry practices because of their ability to drastically exceed the accuracy-length/time scale tradeoff.

DOI
2024

Uncertainty-Aware Yield Prediction with Multimodal Molecular Features

Chen J., Guo K., Liu Z., Isayev O., Zhang X.

, 38, 8274–8282 (2024)

Reactions Reactivity

Predicting chemical reaction yields is pivotal for efficient chemical synthesis, an area that focuses on the creation of novel compounds for diverse uses.

DOI
2024

MLatom 3: A Platform for Machine Learning-Enhanced Computational Chemistry Simulations and Workflows

Dral P. O., Ge F., Hou Y., Zheng P., Chen Y., Barbatti M., Isayev O., Wang C., Xue B., Pinheiro Jr M., Su Y., Dai Y., Chen Y., Zhang L., Zhang S., Ullah A., Zhang Q., Ou Y.

J. Chem. Theory Comput., 20, 1193–1213 (2024)

DOI
2024
cited1

In silico screening of LRRK2 WDR domain inhibitors using deep docking and free energy simulations

Gutkin E., Gusev F., Gentile F., Ban F., Koby S. B., Narangoda C., Isayev O., Cherkasov A., Kurnikova M. G.

(2024)

Drug Discovery
Experiment Automation

The Critical Assessment of Computational Hit-Finding Experiments (CACHE) Challenge series is focused on identifying small molecule inhibitors of protein targets using computational methods.

DOI
2024
cited17

In silico screening of LRRK2 WDR domain inhibitors using deep docking and free energy simulations

Gutkin E., Gusev F., Gentile F., Ban F., Koby S. B., Narangoda C., Isayev O., Cherkasov A., Kurnikova M. G.

Chemical Science, 15, 8800–8812 (2024)

Drug Discovery
Experiment Automation

In this work, we combined Deep Docking and free energy MD simulations for the in silico screening and experimental validation for potential inhibitors of leucine rich repeat kinase 2 (LRRK2) targeting the WD40 repeat (WDR) domain.

DOI
2024
cited8

ANI/EFP: Modeling Long-Range Interactions in ANI Neural Network with Effective Fragment Potentials

Haghiri S., Viquez Rojas C., Bhat S., Isayev O., Slipchenko L.

Journal of Chemical Theory and Computation, 20, 9138–9147 (2024)

ANI/EFP: Modeling Long-Range Interactions in ANI Neural Network with Effective Fragment Potentials.

DOI
2024
cited16

Discovery of Crystallizable Organic Semiconductors with Machine Learning

Johnson H. M., Gusev F., Dull J. T., Seo Y., Priestley R. D., Isayev O., Rand B. P.

J. Am. Chem. Soc., 146, 21583–21590 (2024)

Materials Informatics

Discovery of Crystallizable Organic Semiconductors with Machine Learning.

DOI
2024

Discovery of Crystallizable Organic Semiconductors with Machine Learning

Johnson H. M., Gusev F., Dull J. T., Seo Y., Priestley R. D., Isayev O., Rand B. P.

(2024)

Materials Informatics
Generative Ai

Crystalline organic semiconductors are known to have improved charge carrier mobility and exciton diffusion length in comparison to their amorphous counterparts.

DOI
2024

Discovery of Crystallizable Organic Semiconductors with Machine Learning

Johnson H. M., Gusev F., Dull J. T., Seo Y., Priestley R. D., Isayev O., Rand B. P.

(2024)

Materials Informatics
Generative Ai

Crystalline organic semiconductors are known to have improved charge carrier mobility and exciton diffusion length in comparison to their amorphous counterparts.

DOI
2024
cited2

Accurate Ring Strain Energy Predictions with Machine Learning and Application in Strain-Promoted Reactions

Liu Z., Vinskus J., Fu Y., Liu P., Noonan K., Isayev O.

(2024)

Ml Potentials
Experiment Automation
Reactions Reactivity

Ring strain energy (RSE) is crucial for understanding molecular reactivity.

DOI
2024

De novo molecule design towards biased properties via a deep generative framework and iterative transfer learning

Sattari K., Li D., Kalita B., Xie Y., Lighvan F. B., Isayev O., Lin J.

Digital Discovery, 3, 410–421 (2024)

Generative Ai

The RRCGAN, validated through DFT, demonstrates success in generating chemically valid molecules targeting energy gap values with 75% of the generated molecules have RE of <20% of the targeted values.

DOI
2024

Integrating QSAR modelling and deep learning in drug discovery: the emergence of deep QSAR

Tropsha A., Isayev O., Varnek A., Schneider G., Cherkasov A.

Nat. Rev. Drug Discov., 23, 141–155 (2024)

Drug Discovery
DOI
2024
cited85

Exploring the frontiers of condensed-phase chemistry with a general reactive machine learning potential

Zhang S., Makoś M. Z., Jadrich R. B., Kraka E., Barros K., Nebgen B. T., Tretiak S., Isayev O., Lubbers N., Messerly R. A., Smith J. S.

Nature Chemistry, 16, 727–734 (2024)

Ml Potentials
Experiment Automation

Abstract Atomistic simulation has a broad range of applications from drug design to materials discovery.

DOI

2023

2023
cited27

AIMNet2: A Neural Network Potential to Meet your Neutral, Charged, Organic, and Elemental-Organic Needs

Anstine D., Zubatyuk R., Isayev O.

(2023)

Ml Potentials

Machine learned interatomic potentials (MLIPs) are reshaping computational chemistry practices because of their ability to drastically exceed the accuracy-length/time scale tradeoff.

DOI
2023
cited201

Generative Models as an Emerging Paradigm in the Chemical Sciences

Anstine D. M., Isayev O.

J. Am. Chem. Soc., 145, 8736–8750 (2023)

Generative Models as an Emerging Paradigm in the Chemical Sciences.

DOI
2023
cited143

Machine Learning Interatomic Potentials and Long-Range Physics

Anstine D. M., Isayev O.

J. Phys. Chem. A, 127, 2417–2431 (2023)

Ml Potentials

Machine Learning Interatomic Potentials and Long-Range Physics.

DOI
2023
cited2

Themed collection on Insightful Machine Learning for Physical Chemistry

Clark A. E., Dral P. O., Tamblyn I., Isayev O.

Physical Chemistry Chemical Physics, 25, 22563–22564 (2023)

This themed collection includes a collection of articles on Insightful Machine Learning for Physical Chemistry.

DOI
2023

Synergy of semiempirical models and machine learning in computational chemistry

Fedik N., Nebgen B., Lubbers N., Barros K., Kulichenko M., Li Y. W., Zubatyuk R., Messerly R., Isayev O., Tretiak S.

J. Chem. Phys., 159, 110901 (2023)

Quantum Chemistry
Ml Potentials

Catalyzed by enormous success in the industrial sector, many research programs have been exploring data-driven, machine learning approaches.

DOI
2023
cited44

Active Learning Guided Drug Design Lead Optimization Based on Relative Binding Free Energy Modeling

Gusev F., Gutkin E., Kurnikova M. G., Isayev O.

J. Chem. Inf. Model., 63, 583–594 (2023)

Drug Discovery
Experiment Automation

Active Learning Guided Drug Design Lead Optimization Based on Relative Binding Free Energy Modeling.

DOI
2023

In silico screening of LRRK2 WDR domain inhibitors using deep docking and free energy simulations

Gutkin E., Gusev F., Gentile F., Ban F., Koby S. B., Narangoda C., Isayev O., Cherkasov A., Kurnikova M. G.

(2023)

Drug Discovery
Experiment Automation

The Critical Assessment of Computational Hit-Finding Experiments (CACHE) Challenge is focused on identifying small molecule inhibitors of protein targets using computational methods.

DOI
2023

Scalable hybrid deep neural networks/polarizable potentials biomolecular simulations including long-range effects

Jaffrelot Inizan T., Pl{\'e} T., Adjoua O., Ren P., Gokcan H., Isayev O., Lagard{\`e}re L., Piquemal J.

Chem. Sci., 14, 5438–5452 (2023)

Deep-HP is a scalable extension of the Tinker-HP multi-GPU molecular dynamics (MD) package enabling the use of Pytorch/TensorFlow Deep Neural Network (DNN) models.

DOI
2023

The Challenge of Balancing Model Sensitivity and Robustness in Predicting Yields: A Benchmarking Study of Amide Coupling Reactions

Liu Z., Moroz Y. S., Isayev O.

(2023)

Reactions Reactivity
Experiment Automation

Accurate prediction of reaction yield is the holy grail for computer-assisted synthesis, but current models have failed to generalize to large literature datasets.

DOI
2023

The challenge of balancing model sensitivity and robustness in predicting yields: a benchmarking study of amide coupling reactions

Liu Z., Moroz Y. S., Isayev O.

Chem. Sci., 14, 10835–10846 (2023)

Reactions Reactivity

A sensitive model captures the reactivity cliffs but overfit to yield outliers.

DOI
2023

Exploring the frontiers of condensed-phase chemistry with a general reactive machine learning potential

Messerly R., Zhang S., Makoś M., Jadrich R., Kraka E., Barros K., Nebgen B., Tretiak S., Isayev O., Lubbers N., Smith J.

(2023)

Ml Potentials
Experiment Automation
Reactions Reactivity

Abstract Reactive chemistry atomistic simulation has a broad range of applications from drug design to energy to materials discovery.

DOI
2023

Structure Prediction of Epitaxial Organic Interfaces with Ogre, Demonstrated for Tetracyanoquinodimethane (TCNQ) on Tetrathiafulvalene (TTF)

Moayedpour S., Bier I., Wen W., Dardzinski D., Isayev O., Marom N.

J. Phys. Chem. C, 127, 10398–10410 (2023)

Structure Prediction of Epitaxial Organic Interfaces with Ogre, Demonstrated for Tetracyanoquinodimethane (TCNQ., materials science

DOI
2023

Comprehensive exploration of graphically defined reaction spaces

Zhao Q., Vaddadi S. M., Woulfe M., Ogunfowora L. A., Garimella S. S., Isayev O., Savoie B. M.

Sci. Data, 10, 145 (2023)

Reactions Reactivity

Abstract Existing reaction transition state (TS) databases are comparatively small and lack chemical diversity.

DOI
2023

$Δ^2$ machine learning for reaction property prediction

Zhao Q., Anstine D. M., Isayev O., Savoie B. M.

Chem. Sci., 14, 13392–13401 (2023)

Reactions Reactivity

Newly developed Δ 2 -learning models enable state-of-the-art accuracy in predicting the properties of chemical reactions.

DOI

2022

2022

Extending machine learning beyond interatomic potentials for predicting molecular properties

Fedik N., Zubatyuk R., Kulichenko M., Lubbers N., Smith J. S., Nebgen B., Messerly R., Li Y. W., Boldyrev A. I., Barros K., Isayev O., Tretiak S.

Nat. Rev. Chem., 6, 653–672 (2022)

Extending machine learning beyond interatomic potentials for predicting molecular properties.

DOI
2022
cited42

Learning molecular potentials with neural networks

Gokcan H., Isayev O.

WIREs Comput. Mol. Sci., 12, e1564 (2022)

Ml Potentials
Quantum Chemistry

AbstractThe potential energy of molecular species and their conformers can be computed with a wide range of computational chemistry methods, from molecular mechanics to ab initio quantum chemistry.

DOI
2022
cited2

Simulations of Pathogenic E1α Variants: Allostery and Impact on Pyruvate Dehydrogenase Complex-E1 Structure and Function

Gokcan H., Bedoyan J. K., Isayev O.

Journal of Chemical Information and Modeling, 62, 3463–3475 (2022)

Simulations of Pathogenic E1α Variants: Allostery and Impact on Pyruvate Dehydrogenase Complex-E1 Structure and Function.

DOI
2022

Prediction of Protein pKa with Representation Learning

Gokcan H., Isayev O.

(2022)

Ml Potentials

The behavior of proteins is closely related to the protonation states of the residues.

DOI
2022

Prediction of Protein pKa with Representation Learning

Gokcan H., Isayev O.

(2022)

Ml Potentials

The behavior of proteins is closely related to the protonation states of the residues.

DOI
2022
cited17

Prediction of protein pKawith representation learning

Gokcan H., Isayev O.

Chemical Science, 13, 2462–2474 (2022)

We developed new empirical ML model for protein pKaprediction with MAEs below 0.

DOI
2022
cited4

Active learning guided drug design lead optimization based on relative binding free energy modeling

Gusev F., Gutkin E., Kurnikova M. G., Isayev O.

(2022)

Drug Discovery
Experiment Automation

In silico identification of potent protein inhibitors commonly requires prediction of a ligand binding free energy (BFE).

DOI
2022
cited74

Generative and reinforcement learning approaches for the automated de novo design of bioactive compounds

Korshunova M., Huang N., Capuzzi S., Radchenko D. S., Savych O., Moroz Y. S., Wells C. I., Willson T. M., Tropsha A., Isayev O.

Communications Chemistry, 5 (2022)

Generative Ai
Drug Discovery
Experiment Automation

AbstractDeep generative neural networks have been used increasingly in computational chemistry for de novo design of molecules with desired properties.

DOI
2022

Roadmap on Machine learning in electronic structure

Kulik H. J., Hammerschmidt T., Schmidt J., Botti S., Marques M. A. L., Boley M., Scheffler M., Todorovi{\'c} M., Rinke P., Oses C., Smolyanyuk A., Curtarolo S., Tkatchenko A., Bart{\'o}k A. P., Manzhos S., Ihara M., Carrington T., Behler J., Isayev O., Veit M., Grisafi A., Nigam J., Ceriotti M., Sch{\"u}tt K. T., Westermayr J., Gastegger M., Maurer R. J., Kalita B., Burke K., Nagai R., Akashi R., Sugino O., Hermann J., No{\'e} F., Pilati S., Draxl C., Kuban M., Rigamonti S., Scheidgen M., Esters M., Hicks D., Toher C., Balachandran P. V., Tamblyn I., Whitelam S., Bellinger C., Ghiringhelli L. M.

Electron. Struct., 4, 023004 (2022)

AbstractIn recent years, we have been witnessing a paradigm shift in computational materials science.

DOI
2022

Auto3D: Automatic Generation of the Low-energy 3D Structures with ANI Neural Network Potentials

Liu Z., Zubatiuk T., Roitberg A., Isayev O.

(2022)

Ml Potentials
Reactions Reactivity

Computational programs accelerate the chemical discovery processes but often need proper 3-dimensional molecular information as part of the input.

DOI
2022

Auto3D: Automatic Generation of the Low-energy 3D Structures with ANI Neural Network Potentials

Liu Z., Zubatiuk T., Roitberg A., Isayev O.

(2022)

Ml Potentials
Reactions Reactivity

Computational programs accelerate the chemical discovery processes but often need proper 3-dimensional molecular information as part of the input.

DOI
2022
cited43

Auto3D: Automatic Generation of the Low-Energy 3D Structures with ANI Neural Network Potentials

Liu Z., Zubatiuk T., Roitberg A., Isayev O.

J. Chem. Inf. Model., 62, 5373–5382 (2022)

DOI
2022
cited203

The transformational role of GPU computing and deep learning in drug discovery

Pandey M., Fernandez M., Gentile F., Isayev O., Tropsha A., Stern A. C., Cherkasov A.

Nature Machine Intelligence, 4, 211–221 (2022)

The transformational role of GPU computing and deep learning in drug discovery.

DOI
2022

Toward Chemical Accuracy in Predicting Enthalpies of Formation with General-Purpose Data-Driven Methods

Zheng P., Yang W., Wu W., Isayev O., Dral P. O.

J. Phys. Chem. Lett., 13, 3479–3491 (2022)

Toward Chemical Accuracy in Predicting Enthalpies of Formation with General-Purpose Data-Driven Methods.

DOI

2021

2021
cited393

Best practices in machine learning for chemistry

Artrith N., Butler K. T., Coudert F., Han S., Isayev O., Jain A., Walsh A.

Nature Chemistry, 13, 505–508 (2021)

Best practices in machine learning for chemistry.

DOI
2021
cited66

Crowdsourced mapping of unexplored target space of kinase inhibitors

Cichońska A., Ravikumar B., Allaway R. J., Wan F., Park S., Isayev O., Li S., Mason M., Lamb A., Tanoli Z., Jeon M., Kim S., Popova M., Capuzzi S., Zeng J., Dang K., Koytiger G., Kang J., Wells C. I., Willson T. M., Tan M., Huang C., Shih E. S. C., Chen T., Wu C., Fang W., Chen J., Hwang M., Wang X., Ben Guebila M., Shamsaei B., Singh S., Nguyen T., Karimi M., Wu D., Wang Z., Shen Y., Öztürk H., Ozkirimli E., Özgür A., Lim H., Xie L., Kanev G. K., Kooistra A. J., Westerman B. A., Terzopoulos P., Ntagiantas K., Fotis C., Alexopoulos L., Boeckaerts D., Stock M., De Baets B., Briers Y., Luo Y., Hu H., Peng J., Dogan T., Rifaioglu A. S., Atas H., Atalay R. C., Atalay V., Martin M. J., Jeon M., Lee J., Yun S., Kim B., Chang B., Turu G., Misák Á., Szalai B., Hunyady L., Lienhard M., Prasse P., Bachmann I., Ganzlin J., Barel G., Herwig R., Oršolić D., Lučić B., Stepanić V., Šmuc T., Oprea T. I., Schlessinger A., Drewry D. H., Stolovitzky G., Wennerberg K., Guinney J., Aittokallio T.

Nature Communications, 12 (2021)

Drug Discovery

Abstract Despite decades of intensive search for compounds that modulate the activity of particular protein targets, a large proportion of the human kinome remains as yet undrugged.

DOI
2021
cited89

Harnessing the Power of Smart and Connected Health to Tackle COVID-19: IoT, AI, Robotics, and Blockchain for a Better World

Firouzi F., Farahani B., Daneshmand M., Grise K., Song J., Saracco R., Wang L. L., Lo K., Angelov P., Soares E., Loh P., Talebpour Z., Moradi R., Goodarzi M., Ashraf H., Talebpour M., Talebpour A., Romeo L., Das R., Heidari H., Pasquale D., Moody J., Woods C., Huang E. S., Barnaghi P., Sarrafzadeh M., Li R., Beck K. L., Isayev O., Sung N., Luo A.

IEEE Internet of Things Journal, 8, 12826–12846 (2021)

Experiment Automation

Harnessing the Power of Smart and Connected Health to Tackle COVID-19: IoT, AI, Robotics, and Blockchain for a Better World.

DOI
2021
cited11

Active Learning in Bayesian Neural Networks for Bandgap Predictions of Novel Van der Waals Heterostructures

Fronzi M., Isayev O., Winkler D. A., Shapter J. G., Ellis A. V., Sherrell P. C., Shepelin N. A., Corletto A., Ford M. J.

Advanced Intelligent Systems, 3 (2021)

Experiment Automation

The bandgap is one of the most fundamental properties of condensed matter.

DOI
2021
cited1

Prediction of Protein pKa with Representation Learning

Gokcan H., Isayev O.

(2021)

Ml Potentials

The behavior of proteins is closely related to the protonation states of the residues.

DOI
2021
cited1

Prediction of Protein pKa with Representation Learning

Gokcan H., Isayev O.

(2021)

Ml Potentials

The behavior of proteins is closely related to the protonation states of the residues.

DOI
2021
cited6

A Bag of Tricks for Automated De Novo Design of Molecules with the Desired Properties: Application to EGFR Inhibitor Discovery

Korshunova M., Huang N., Capuzzi S., Radchenko D. S., Savych O., Moroz Y. S., Wells C., Willson T. M., Tropsha A., Isayev O.

(2021)

Generative Ai
Drug Discovery
Experiment Automation

Deep generative neural networks have been used increasingly in computational chemistry for de novo design of molecules with desired properties.

DOI
2021
cited86

OpenChem: A Deep Learning Toolkit for Computational Chemistry and Drug Design

Korshunova M., Ginsburg B., Tropsha A., Isayev O.

Journal of Chemical Information and Modeling, 61, 7–13 (2021)

OpenChem: A Deep Learning Toolkit for Computational Chemistry and Drug Design.

DOI
2021
cited173

A critical overview of computational approaches employed for COVID-19 drug discovery

Muratov E. N., Amaro R., Andrade C. H., Brown N., Ekins S., Fourches D., Isayev O., Kozakov D., Medina-Franco J. L., Merz K. M., Oprea T. I., Poroikov V., Schneider G., Todd M. H., Varnek A., Winkler D. A., Zakharov A. V., Cherkasov A., Tropsha A.

Chemical Society Reviews, 50, 9121–9151 (2021)

We cover diverse methodologies, computational approaches, and case studies illustrating the ongoing efforts to develop viable drug candidates for treatment of COVID-19.

DOI
2021
cited135

Machine-Learning-Guided Discovery of 19 F MRI Agents Enabled by Automated Copolymer Synthesis

Reis M., Gusev F., Taylor N. G., Chung S. H., Verber M. D., Lee Y. Z., Isayev O., Leibfarth F. A.

Journal of the American Chemical Society, 143, 17677–17689 (2021)

Machine-Learning-Guided Discovery of 19 F MRI Agents Enabled by Automated Copolymer Synthesis.

DOI
2021
cited115

Artificial intelligence-enhanced quantum chemical method with broad applicability

Zheng P., Zubatyuk R., Wu W., Isayev O., Dral P. O.

Nature Communications, 12 (2021)

Quantum Chemistry
Ml Potentials

Abstract High-level quantum mechanical (QM) calculations are indispensable for accurate explanation of natural phenomena on the atomistic level.

DOI
2021
cited25

Machine learned Hückel theory: Interfacing physics and deep neural networks

Zubatiuk T., Nebgen B., Lubbers N., Smith J. S., Zubatyuk R., Zhou G., Koh C., Barros K., Isayev O., Tretiak S.

The Journal of Chemical Physics, 154 (2021)

Quantum Chemistry

The Hückel Hamiltonian is an incredibly simple tight-binding model known for its ability to capture qualitative physics phenomena arising from electron interactions in molecules and materials.

DOI
2021
cited132

Development of Multimodal Machine Learning Potentials: Toward a Physics-Aware Artificial Intelligence

Zubatiuk T., Isayev O.

Accounts of Chemical Research, 54, 1575–1585 (2021)

Development of Multimodal Machine Learning Potentials: Toward a Physics-Aware Artificial Intelligence.

DOI
2021
cited94

Teaching a neural network to attach and detach electrons from molecules

Zubatyuk R., Smith J. S., Nebgen B. T., Tretiak S., Isayev O.

Nature Communications, 12 (2021)

Ml Potentials
Reactions Reactivity
Drug Discovery
Quantum Chemistry

Abstract Interatomic potentials derived with Machine Learning algorithms such as Deep-Neural Networks (DNNs), achieve the accuracy of high-fidelity quantum mechanical (QM) methods in areas traditionally dominated by empirical force fields and allow performing massive simulations.

DOI
2021
cited3

Teaching a Neural Network to Attach and Detach Electrons from Molecules

Zubatyuk R., Smith J., Nebgen B. T., Tretiak S., Isayev O.

(2021)

Ml Potentials
Reactions Reactivity
Drug Discovery
Quantum Chemistry

Physics-inspired Artificial Intelligence (AI) is at the forefront of methods development in molecular modeling and computational chemistry.

DOI

2020

2020
cited6

Crowdsourced mapping extends the target space of kinase inhibitors

Cichonska A., Ravikumar B., Allaway R. J., Park S., Wan F., Isayev O., Li S., Mason M., Lamb A., Tanoli Z., Jeon M., Kim S., Popova M., Capuzzi S., Zeng J., Dang K., Koytiger G., Kang J., Wells C. I., Willson T. M., Oprea T. I., Schlessinger A., Drewry D. H., Stolovitzky G., Wennerberg K., Guinney J., Aittokallio T.

(2020)

Drug Discovery

AbstractDespite decades of intensive search for compounds that modulate the activity of particular targets, there are currently small-molecules available only for a small proportion of the human proteome.

DOI
2020
cited327

Extending the Applicability of the ANI Deep Learning Molecular Potential to Sulfur and Halogens

Devereux C., Smith J. S., Huddleston K. K., Barros K., Zubatyuk R., Isayev O., Roitberg A. E.

Journal of Chemical Theory and Computation, 16, 4192–4202 (2020)

Extending the Applicability of the ANI Deep Learning Molecular Potential to Sulfur and Halogens.

DOI
2020
cited3

Extending the Applicability of the ANI Deep Learning Molecular Potential to Sulfur and Halogens

Devereux C., Smith J., Davis K., Barros K., Zubatyuk R., Isayev O., Roitberg A.

(2020)

Ml Potentials
Reactions Reactivity

Machine learning (ML) methods have become powerful, predictive tools in a wide range of applications, such as facial recognition and autonomous vehicles.

DOI
2020
cited14

High Throughput Screening of Millions of van der Waals Heterostructures for Superlubricant Applications

Fronzi M., Tawfik S. A., Ghazaleh M. A., Isayev O., Winkler D. A., Shapter J., Ford M. J.

Advanced Theory and Simulations, 3 (2020)

AbstractThe screening of novel materials is an important topic in the field of materials science.

DOI
2020
cited259

TorchANI: A Free and Open Source PyTorch-Based Deep Learning Implementation of the ANI Neural Network Potentials

Gao X., Ramezanghorbani F., Isayev O., Smith J. S., Roitberg A. E.

Journal of Chemical Information and Modeling, 60, 3408–3415 (2020)

Ml Potentials

TorchANI: A Free and Open Source PyTorch-Based Deep Learning Implementation of the ANI Neural Network Potentials.

DOI
2020
cited2

TorchANI: A Free and Open Source PyTorch Based Deep Learning Implementation of the ANI Neural Network Potentials

Gao X., Ramezanghorbani F., Isayev O., Smith J., Roitberg A.

(2020)

Ml Potentials

This paper presents TorchANI, a PyTorch based software for training/inferenceof ANI (ANAKIN-ME) deep learning models to obtain potential energy surfaces andother physical properties of molecular systems.

DOI
2020

Review for: Assessing Conformer Energies using Electronic Structure and Machine Learning Methods

Isayev O.

(2020)

Review for: Assessing Conformer Energies using Electronic Structure and Machine Learning Methods.

DOI
2020
cited14

Correction: QSAR without borders

Muratov E. N., Bajorath J., Sheridan R. P., Tetko I. V., Filimonov D., Poroikov V., Oprea T. I., Baskin I. I., Varnek A., Roitberg A., Isayev O., Curtarolo S., Fourches D., Cohen Y., Aspuru-Guzik A., Winkler D. A., Agrafiotis D., Cherkasov A., Tropsha A.

Chemical Society Reviews, 49, 3716–3716 (2020)

Correction: QSAR without borders.

DOI
2020
cited485

QSAR without borders

Muratov E. N., Bajorath J., Sheridan R. P., Tetko I. V., Filimonov D., Poroikov V., Oprea T. I., Baskin I. I., Varnek A., Roitberg A., Isayev O., Curtalolo S., Fourches D., Cohen Y., Aspuru-Guzik A., Winkler D. A., Agrafiotis D., Cherkasov A., Tropsha A.

Chemical Society Reviews, 49, 3525–3564 (2020)

Word cloud summary of diverse topics associated with QSAR modeling that are discussed in this review.

DOI
2020

DRACON: Disconnected Graph Neural Network for Atom Mapping in Chemical Reactions

Nikitin F., Isayev O., Strijov V.

(2020)

Reactions Reactivity

Machine learning solved many challenging problems in computer-assisted synthesis prediction (CASP).

DOI
2020

DRACON: Disconnected Graph Neural Network for Atom Mapping in Chemical Reactions

Nikitin F., Isayev O., Strijov V.

(2020)

Reactions Reactivity

Machine learning solved many challenging problems in computer-assisted synthesis prediction (CASP).

DOI
2020
cited7

DRACON: Disconnected Graph Neural Network for Atom Mapping in Chemical Reactions

Nikitin F., Isayev O., Strijov V.

(2020)

Reactions Reactivity

Machine learning solved many challenging problems in computer-assisted synthesis prediction (CASP).

DOI
2020
cited9

DRACON: disconnected graph neural network for atom mapping in chemical reactions

Nikitin F., Isayev O., Strijov V.

Physical Chemistry Chemical Physics, 22, 26478–26486 (2020)

Reactions Reactivity

We formulate a reaction prediction problem in terms of node-classification in a disconnected graph of source molecules and generalize a graph convolution neural network for disconnected graphs.

DOI
2020

OpenChem: A Deep Learning Toolkit for Computational Chemistry and Drug Design

Popova M., Ginsburg B., Tropsha A., Isayev O.

(2020)

Deep learning models have demonstrated outstanding results in many data-rich areas of research, such as computer vision and natural language processing.

DOI
2020
cited63

Towards chemical accuracy for alchemical free energy calculations with hybrid physics-based machine learning / molecular mechanics potentials

Rufa D. A., Bruce Macdonald H. E., Fass J., Wieder M., Grinaway P. B., Roitberg A. E., Isayev O., Chodera J. D.

(2020)

Drug Discovery
Ml Potentials

Towards chemical accuracy for alchemical free energy calculations with hybrid physics-based machine learning / molecular mechanics potentials.

DOI
2020
cited212

The ANI-1ccx and ANI-1x data sets, coupled-cluster and density functional theory properties for molecules

Smith J. S., Zubatyuk R., Nebgen B., Lubbers N., Barros K., Roitberg A. E., Isayev O., Tretiak S.

Scientific Data, 7 (2020)

Ml Potentials
Quantum Chemistry
Experiment Automation

Abstract Maximum diversification of data is a central theme in building generalized and accurate machine learning (ML) models.

DOI
2020
cited2

The ANI-1ccx and ANI-1x Data Sets, Coupled-Cluster and Density Functional Theory Properties for Molecules

Smith J. S., Zubatyuk R., Nebgen B. T., Lubbers N., Barros K., Roitberg A., Isayev O., Tretiak S.

(2020)

Quantum Chemistry
Ml Potentials
Experiment Automation

Maximum diversification of data is a central theme in building generalized and accurate machine learning (ML) models.

DOI
2020
cited2

The ANI-1ccx and ANI-1x Data Sets, Coupled-Cluster and Density Functional Theory Properties for Molecules

Smith J. S., Zubatyuk R., Nebgen B. T., Lubbers N., Barros K., Roitberg A., Isayev O., Tretiak S.

(2020)

Quantum Chemistry
Ml Potentials
Experiment Automation

Maximum diversification of data is a central theme in building generalized and accurate machine learning (ML) models.

DOI
2020
cited7

Teaching a Neural Network to Attach and Detach Electrons from Molecules

Zubatyuk R., Smith J., Nebgen B. T., Tretiak S., Isayev O.

(2020)

Ml Potentials
Reactions Reactivity
Drug Discovery
Quantum Chemistry

Physics-inspired Artificial Intelligence (AI) is at the forefront of methods development in molecular modeling and computational chemistry.

DOI

2019

2019
cited8

Inter-Modular Linkers play a crucial role in governing the biosynthesis of non-ribosomal peptides

Farag S., Bleich R. M., Shank E. A., Isayev O., Bowers A. A., Tropsha A.

Bioinformatics, 35, 3584–3591 (2019)

Drug Discovery
Reactions Reactivity

Abstract Motivation Non-ribosomal peptide synthetases (NRPSs) are modular enzymatic machines that catalyze the ribosome-independent production of structurally complex small peptides, many of which have important clinical applications as antibiotics, antifungals and anti-cancer agents.

DOI
2019
cited6

Quantitative Structure–Price Relationship (QS$R) Modeling and the Development of Economically Feasible Drug Discovery Projects

Fernandez M., Ban F., Woo G., Isaev O., Perez C., Fokin V., Tropsha A., Cherkasov A.

Journal of Chemical Information and Modeling, 59, 1306–1313 (2019)

Quantitative Structure–Price Relationship (QS$R) Modeling and the Development of Economically Feasible Drug Discovery Projects.

DOI
2019
cited17

Text mining facilitates materials discovery

Isayev O.

Nature, 571, 42–43 (2019)

Text mining facilitates materials discovery.

DOI
2019
cited293

Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen

Menden M. P., Wang D., Mason M. J., Szalai B., Bulusu K. C., Guan Y., Yu T., Kang J., Jeon M., Wolfinger R., Nguyen T., Zaslavskiy M., Abante J., Abecassis B. S., Aben N., Aghamirzaie D., Aittokallio T., Akhtari F. S., Al-lazikani B., Alam T., Allam A., Allen C., de Almeida M. P., Altarawy D., Alves V., Amadoz A., Anchang B., Antolin A. A., Ash J. R., Aznar V. R., Ba-alawi W., Bagheri M., Bajic V., Ball G., Ballester P. J., Baptista D., Bare C., Bateson M., Bender A., Bertrand D., Wijayawardena B., Boroevich K. A., Bosdriesz E., Bougouffa S., Bounova G., Brouwer T., Bryant B., Calaza M., Calderone A., Calza S., Capuzzi S., Carbonell-Caballero J., Carlin D., Carter H., Castagnoli L., Celebi R., Cesareni G., Chang H., Chen G., Chen H., Chen H., Cheng L., Chernomoretz A., Chicco D., Cho K., Cho S., Choi D., Choi J., Choi K., Choi M., Cock M. D., Coker E., Cortes-Ciriano I., Cserzö M., Cubuk C., Curtis C., Daele D. V., Dang C. C., Dijkstra T., Dopazo J., Draghici S., Drosou A., Dumontier M., Ehrhart F., Eid F., ElHefnawi M., Elmarakeby H., van Engelen B., Engin H. B., de Esch I., Evelo C., Falcao A. O., Farag S., Fernandez-Lozano C., Fisch K., Flobak A., Fornari C., Foroushani A. B. K., Fotso D. C., Fourches D., Friend S., Frigessi A., Gao F., Gao X., Gerold J. M., Gestraud P., Ghosh S., Gillberg J., Godoy-Lorite A., Godynyuk L., Godzik A., Goldenberg A., Gomez-Cabrero D., Gonen M., de Graaf C., Gray H., Grechkin M., Guimera R., Guney E., Haibe-Kains B., Han Y., Hase T., He D., He L., Heath L. S., Hellton K. H., Helmer-Citterich M., Hidalgo M. R., Hidru D., Hill S. M., Hochreiter S., Hong S., Hovig E., Hsueh Y., Hu Z., Huang J. K., Huang R. S., Hunyady L., Hwang J., Hwang T. H., Hwang W., Hwang Y., Isayev O., Don’t Walk O. B., Jack J., Jahandideh S., Ji J., Jo Y., Kamola P. J., Kanev G. K., Karacosta L., Karimi M., Kaski S., Kazanov M., Khamis A. M., Khan S. A., Kiani N. A., Kim A., Kim J., Kim J., Kim K., Kim K., Kim S., Kim Y., Kim Y., Kirk P. D. W., Kitano H., Klambauer G., Knowles D., Ko M., Kohn-Luque A., Kooistra A. J., Kuenemann M. A., Kuiper M., Kurz C., Kwon M., van Laarhoven T., Laegreid A., Lederer S., Lee H., Lee J., Lee Y. W., Lepp_aho E., Lewis R., Li J., Li L., Liley J., Lim W. K., Lin C., Liu Y., Lopez Y., Low J., Lysenko A., Machado D., Madhukar N., Maeyer D. D., Malpartida A. B., Mamitsuka H., Marabita F., Marchal K., Marttinen P., Mason D., Mazaheri A., Mehmood A., Mehreen A., Michaut M., Miller R. A., Mitsopoulos C., Modos D., Moerbeke M. V., Moo K., Motsinger-Reif A., Movva R., Muraru S., Muratov E., Mushthofa M., Nagarajan N., Nakken S., Nath A., Neuvial P., Newton R., Ning Z., Niz C. D., Oliva B., Olsen C., Palmeri A., Panesar B., Papadopoulos S., Park J., Park S., Park S., Pawitan Y., Peluso D., Pendyala S., Peng J., Perfetto L., Pirro S., Plevritis S., Politi R., Poon H., Porta E., Prellner I., Preuer K., Pujana M. A., Ramnarine R., Reid J. E., Reyal F., Richardson S., Ricketts C., Rieswijk L., Rocha M., Rodriguez-Gonzalvez C., Roell K., Rotroff D., de Ruiter J. R., Rukawa P., Sadacca B., Safikhani Z., Safitri F., Sales-Pardo M., Sauer S., Schlichting M., Seoane J. A., Serra J., Shang M., Sharma A., Sharma H., Shen Y., Shiga M., Shin M., Shkedy Z., Shopsowitz K., Sinai S., Skola D., Smirnov P., Soerensen I. F., Soerensen P., Song J., Song S. O., Soufan O., Spitzmueller A., Steipe B., Suphavilai C., Tamayo S. P., Tamborero D., Tang J., Tanoli Z., Tarres-Deulofeu M., Tegner J., Thommesen L., Tonekaboni S. A. M., Tran H., Troyer E. D., Truong A., Tsunoda T., Turu G., Tzeng G., Verbeke L., Videla S., Vis D., Voronkov A., Votis K., Wang A., Wang H. H., Wang P., Wang S., Wang W., Wang X., Wang X., Wennerberg K., Wernisch L., Wessels L., van Westen G. J. P., Westerman B. A., White S. R., Willighagen E., Wurdinger T., Xie L., Xie S., Xu H., Yadav B., Yau C., Yeerna H., Yin J. W., Yu M., Yu M., Yun S. J., Zakharov A., Zamichos A., Zanin M., Zeng L., Zenil H., Zhang F., Zhang P., Zhang W., Zhao H., Zhao L., Zheng W., Zoufir A., Zucknick M., Jang I. S., Ghazoui Z., Ahsen M. E., Vogel R., Neto E. C., Norman T., Tang E. K. Y., Garnett M. J., Veroli G. Y. D., Fawell S., Stolovitzky G., Guinney J., Dry J. R., Saez-Rodriguez J.

Nature Communications, 10 (2019)

Drug Discovery

Abstract The effectiveness of most cancer targeted therapies is short-lived.

DOI
2019

The ANI-1ccx and ANI-1x Data Sets, Coupled-Cluster and Density Functional Theory Properties for Molecules

Smith J. S., Zubatyuk R., Nebgen B. T., Lubbers N., Barros K., Roitberg A., Isayev O., Tretiak S.

(2019)

Quantum Chemistry
Ml Potentials
Experiment Automation

Maximum diversification of data is a central theme in building generalized and accurate machine learning (ML) models.

DOI
2019
cited531

Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning

Smith J. S., Nebgen B. T., Zubatyuk R., Lubbers N., Devereux C., Barros K., Tretiak S., Isayev O., Roitberg A. E.

Nature Communications, 10 (2019)

Quantum Chemistry
Ml Potentials

Abstract Computational modeling of chemical and biological systems at atomic resolution is a crucial tool in the chemist’s toolset.

DOI
2019
cited5

Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning

S Smith J., Nebgen B. T., Zubatyuk R., Lubbers N., Devereux C., Barros K., Tretiak S., Isayev O., Roitberg A.

(2019)

Quantum Chemistry
Ml Potentials

Computational modeling of chemical and biological systems at atomic resolution is a crucial tool in the chemist's toolset.

DOI
2019
cited5

Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning

S Smith J., Nebgen B. T., Zubatyuk R., Lubbers N., Devereux C., Barros K., Tretiak S., Isayev O., Roitberg A.

(2019)

Quantum Chemistry
Ml Potentials

Computational modeling of chemical and biological systems at atomic resolution is a crucial tool in the chemist's toolset.

DOI
2019
cited39

Predicting Thermal Properties of Crystals Using Machine Learning

Tawfik S. A., Isayev O., Spencer M. J. S., Winkler D. A.

Advanced Theory and Simulations, 3 (2019)

Materials Informatics

AbstractCalculating vibrational properties of crystals using quantum mechanical (QM) methods is a challenging problem in computational material science.

DOI
2019
cited2

Adsorption of nitrogen-containing compounds on hydroxylated α-quartz surfaces

Tsendra O., Boese A. D., Isayev O., Gorb L., Scott A. M., Hill F. C., Ilchenko M. M., Lobanov V., Leszczynska D., Leszczynski J.

RSC Advances, 9, 36066–36074 (2019)

Adsorption energies of different nitrogen-containing compounds on two hydroxylated (001) and (100) quartz surfaces are computed.

DOI
2019
cited227

Accurate and transferable multitask prediction of chemical properties with an atoms-in-molecules neural network

Zubatyuk R., Smith J. S., Leszczynski J., Isayev O.

Science Advances, 5 (2019)

We introduce a modular, chemically inspired deep neural network model for prediction of several atomic and molecular properties.

DOI

2018

2018
cited3561

Machine learning for molecular and materials science

Butler K. T., Davies D. W., Cartwright H., Isayev O., Walsh A.

Nature, 559, 547–555 (2018)

Machine learning for molecular and materials science.

DOI
2018
cited34

Materials discovery by chemical analogy: role of oxidation states in structure prediction

Davies D. W., Butler K. T., Isayev O., Walsh A.

Faraday Discussions, 211, 553–568 (2018)

We have built a model that ascribes probabilities to the formation of hypothetical compounds, given the proposed oxidation states of the constituent species.

DOI
2018
cited5

Diffusion of energetic compounds through biological membrane: Application of classical MD and COSMOmic approximations

Golius A., Gorb L., Isayev O., Leszczynski J.

Journal of Biomolecular Structure and Dynamics, 37, 247–255 (2018)

Diffusion of energetic compounds through biological membrane: Application of classical MD and COSMOmic approximations.

DOI
2018
cited100

AFLOW-ML: A RESTful API for machine-learning predictions of materials properties

Gossett E., Toher C., Oses C., Isayev O., Legrain F., Rose F., Zurek E., Carrete J., Mingo N., Tropsha A., Curtarolo S.

Computational Materials Science, 152, 134–145 (2018)

AFLOW-ML: A RESTful API for machine-learning predictions of materials properties.

DOI
2018
cited100

Transferable Dynamic Molecular Charge Assignment Using Deep Neural Networks

Nebgen B., Lubbers N., Smith J. S., Sifain A. E., Lokhov A., Isayev O., Roitberg A. E., Barros K., Tretiak S.

Journal of Chemical Theory and Computation, 14, 4687–4698 (2018)

Transferable Dynamic Molecular Charge Assignment Using Deep Neural Networks.

DOI
2018
cited1017

Deep reinforcement learning for de novo drug design

Popova M., Isayev O., Tropsha A.

Science Advances, 4 (2018)

We introduce an artificial intelligence approach to de novo design of molecules with desired physical or biological properties.

DOI
2018

Discovering a Transferable Charge Assignment Model Using Machine Learning

Sifain A. E., Lubbers N., Nebgen B. T., Smith J. S., Lokhov A. Y., Isayev O., Roitberg A. E., Barros K., Tretiak S.

(2018)

Partial atomic charge assignment is of immense practical value to force field parametrization, molecular docking, and cheminformatics.

DOI
2018
cited115

Discovering a Transferable Charge Assignment Model Using Machine Learning

Sifain A. E., Lubbers N., Nebgen B. T., Smith J. S., Lokhov A. Y., Isayev O., Roitberg A. E., Barros K., Tretiak S.

The Journal of Physical Chemistry Letters, 9, 4495–4501 (2018)

Discovering a Transferable Charge Assignment Model Using Machine Learning.

DOI
2018
cited84

Transforming Computational Drug Discovery with Machine Learning and AI

Smith J. S., Roitberg A. E., Isayev O.

ACS Medicinal Chemistry Letters, 9, 1065–1069 (2018)

Transforming Computational Drug Discovery with Machine Learning and AI.

DOI
2018
cited682

Less is more: Sampling chemical space with active learning

Smith J. S., Nebgen B., Lubbers N., Isayev O., Roitberg A. E.

The Journal of Chemical Physics, 148 (2018)

Generative Ai
Experiment Automation

The development of accurate and transferable machine learning (ML) potentials for predicting molecular energetics is a challenging task.

DOI
2018
cited80

Efficient Prediction of Structural and Electronic Properties of Hybrid 2D Materials Using Complementary DFT and Machine Learning Approaches

Tawfik S. A., Isayev O., Stampfl C., Shapter J., Winkler D. A., Ford M. J.

Advanced Theory and Simulations, 2 (2018)

Quantum Chemistry
Experiment Automation

Abstract There are now, in principle, a limitless number of hybrid van der Waals (vdW) heterostructures that can be built from the rapidly growing number of 2D layers.

DOI
2018

Efficient prediction of structural and electronic properties of hybrid 2D materials using complementary DFT and machine learning approaches

Tawfik S., Isayev O., Stampfl C., Shapter J., Winkler D., Ford M. J.

(2018)

Quantum Chemistry
Experiment Automation

There are now, in principle, a limitless number of hybrid van der Waals heterostructures that can be built from the rapidly growing number of two-dimensional layers.

DOI
2018

Efficient prediction of structural and electronic properties of hybrid 2D materials using complementary DFT and machine learning approaches

Tawfik S., Isayev O., Stampfl C., Shapter J., Winkler D., Ford M. J.

(2018)

Quantum Chemistry
Experiment Automation

There are now, in principle, a limitless number of hybrid van der Waals heterostructures that can be built from the rapidly growing number of two-dimensional layers.

DOI
2018

Efficient Prediction of Structural and Electronic Properties of Hybrid 2D Materials Using DFT and Machine Learning

Tawfik S., Isayev O., Stampfl C., Shapter J., Winkler D., Ford M. J.

(2018)

Experiment Automation

Efficient Prediction of Structural and Electronic Properties of Hybrid 2D Materials Using DFT and Machine Learning.

DOI
2018

Efficient Prediction of Structural and Electronic Properties of Hybrid 2D Materials Using DFT and Machine Learning

Tawfik S., Isayev O., Stampfl C., Shapter J., Winkler D., Ford M. J.

(2018)

Experiment Automation

Efficient Prediction of Structural and Electronic Properties of Hybrid 2D Materials Using DFT and Machine Learning.

DOI
2018
cited2

Accurate and Transferable Multitask Prediction of Chemical Properties with an Atoms-in-Molecule Neural Network

Zubatyuk R., Smith J. S., Leszczynski J., Isayev O.

(2018)

Ml Potentials

Atomic and molecular properties could be evaluated from the fundamental Schrodinger’s equation and therefore represent different modalities of the same quantum phenomena.

DOI
2018
cited2

Accurate and Transferable Multitask Prediction of Chemical Properties with an Atoms-in-Molecule Neural Network

Zubatyuk R., Smith J. S., Leszczynski J., Isayev O.

(2018)

Ml Potentials

Atomic and molecular properties could be evaluated from the fundamental Schrodinger’s equation and therefore represent different modalities of the same quantum phenomena.

DOI
2018

Accurate and Transferable Multitask Prediction of Chemical Properties with an Atoms-in-Molecule Neural Network

Zubatyuk R., Smith J. S., Leszczynski J., Isayev O.

(2018)

Ml Potentials

Atomic and molecular properties could be evaluated from the fundamental Schrodinger’s equation and therefore represent different modalities of the same quantum phenomena.

DOI

2017

2017
cited558

Universal fragment descriptors for predicting properties of inorganic crystals

Isayev O., Oses C., Toher C., Gossett E., Curtarolo S., Tropsha A.

Nature Communications, 8 (2017)

Materials Informatics

AbstractAlthough historically materials discovery has been driven by a laborious trial-and-error process, knowledge-driven materials design can now be enabled by the rational combination of Machine Learning methods and materials databases.

DOI
2017
cited269

ANI-1, A data set of 20 million calculated off-equilibrium conformations for organic molecules

Smith J. S., Isayev O., Roitberg A. E.

Scientific Data, 4 (2017)

Ml Potentials
Quantum Chemistry

AbstractOne of the grand challenges in modern theoretical chemistry is designing and implementing approximations that expedite ab initio methods without loss of accuracy.

DOI
2017
cited1243

ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost

Smith J. S., Isayev O., Roitberg A. E.

Chemical Science, 8, 3192–3203 (2017)

Ml Potentials
Quantum Chemistry

We demonstrate how a deep neural network (NN) trained on a data set of quantum mechanical (QM) DFT calculated energies can learn an accurate and transferable atomistic potential for organic molecules containing H, C, N, and O atoms.

DOI

2016

2016
cited74

QSAR Modeling of Tox21 Challenge Stress Response and Nuclear Receptor Signaling Toxicity Assays

Capuzzi S. J., Politi R., Isayev O., Farag S., Tropsha A.

Frontiers in Environmental Science, 4 (2016)

Drug Discovery

QSAR Modeling of Tox21 Challenge Stress Response and Nuclear Receptor Signaling Toxicity Assays.

DOI
2016

Atlas Regeneration Company, Inc.

Makarev E., Isayev O., Atala A.

Regenerative Medicine, 11, 141–143 (2016)

Atlas Regeneration Company, Inc..

DOI
2016
cited25

Material informatics driven design and experimental validation of lead titanate as an aqueous solar photocathode

Moot T., Isayev O., Call R. W., McCullough S. M., Zemaitis M., Lopez R., Cahoon J. F., Tropsha A.

Materials Discovery, 6, 9–16 (2016)

Material informatics driven design and experimental validation of lead titanate as an aqueous solar photocathode.

DOI

2015

2015
cited261

Materials Cartography: Representing and Mining Materials Space Using Structural and Electronic Fingerprints

Isayev O., Fourches D., Muratov E. N., Oses C., Rasch K., Tropsha A., Curtarolo S.

Chemistry of Materials, 27, 735–743 (2015)

Materials Cartography: Representing and Mining Materials Space Using Structural and Electronic Fingerprints.

DOI
2015
cited16

Are the reduction and oxidation properties of nitrocompounds dissolved in water different from those produced when adsorbed on a silica surface? A DFT M05-2X computational study

Sviatenko L. K., Isayev O., Gorb L., Hill F. C., Leszczynska D., Leszczynski J.

Journal of Computational Chemistry, 36, 1029–1035 (2015)

Are the reduction and oxidation properties of nitrocompounds dissolved in water different from those produced when adsorbed on a silica surface? A DFT M05-2X computational study.

DOI

2012

2012
cited8

Validation of a novel secretion modification region (SMR) of HIV-1 Nef using cohort sequence analysis and molecular modeling

Campbell P. E., Isayev O., Ali S. A., Roth W. W., Huang M., Powell M. D., Leszczynski J., Bond V. C.

Journal of Molecular Modeling, 18, 4603–4613 (2012)

Validation of a novel secretion modification region (SMR) of HIV-1 Nef using cohort sequence analysis and molecular modeling.

DOI
2012
cited14

Mechanical properties of silicon nanowires

Furmanchuk A., Isayev O., Dinadayalane T. C., Leszczynska D., Leszczynski J.

WIREs Computational Molecular Science, 2, 817–828 (2012)

Materials Informatics

AbstractSilicon nanowires (SiNWs) are at the top of the list of materials used in conventional electromechanical devices as well as in strained nanotechnology.

DOI
2012
cited14

In silico structure–function analysis of E. cloacae nitroreductase

Isayev O., Crespo‐Hernández C. E., Gorb L., Hill F. C., Leszczynski J.

Proteins: Structure, Function, and Bioinformatics, 80, 2728–2741 (2012)

Ml Potentials
Drug Discovery

AbstractReduction, catalyzed by the bacterial nitroreductases, is the quintessential first step in the biodegradation of a variety of nitroaromatic compounds from contaminated waters and soil.

DOI

2011

2011

Evaluation of natural and nitramine binding energies to 3-D models of the S1S2 domains in the N-methyl-D-aspartate receptor

Ford-Green J., Isayev O., Gorb L., Perkins E. J., Leszczynski J.

Journal of Molecular Modeling, 18, 1273–1284 (2011)

Evaluation of natural and nitramine binding energies to 3-D models of the S1S2 domains in the N-methyl-D-aspartate receptor.

DOI
2011
cited5

Car–Parrinello Molecular Dynamics Simulations of Tensile Tests on Si⟨001⟩ Nanowires

Furmanchuk A., Isayev O., Dinadayalane T. C., Leszczynski J.

The Journal of Physical Chemistry C, 115, 12283–12292 (2011)

Car–Parrinello Molecular Dynamics Simulations of Tensile Tests on Si⟨001⟩ Nanowires.

DOI
2011
cited59

Novel view on the mechanism of water-assisted proton transfer in the DNA bases: bulk water hydration

Furmanchuk A., Isayev O., Gorb L., Shishkin O. V., Hovorun D. M., Leszczynski J.

Physical Chemistry Chemical Physics, 13, 4311 (2011)

Novel view on the mechanism of water-assisted proton transfer in the DNA bases: bulk water hydration.

DOI
2011
cited106

Effect of Solvation on the Vertical Ionization Energy of Thymine: From Microhydration to Bulk

Ghosh D., Isayev O., Slipchenko L. V., Krylov A. I.

The Journal of Physical Chemistry A, 115, 6028–6038 (2011)

Effect of Solvation on the Vertical Ionization Energy of Thymine: From Microhydration to Bulk.

DOI
2011
cited41

Toward robust computational electrochemical predicting the environmental fate of organic pollutants

Sviatenko L., Isayev O., Gorb L., Hill F., Leszczynski J.

Journal of Computational Chemistry, 32, 2195–2203 (2011)

Materials Informatics

AbstractA number of density functionals was utilized for the calculation of electron attachment free energy for nitrocompounds, quinones and azacyclic compounds.

DOI

2010

2010
cited27

Hydration of nucleic acid bases: a Car–Parrinello molecular dynamics approach

Furmanchuk A., Isayev O., Shishkin O. V., Gorb L., Leszczynski J.

Physical Chemistry Chemical Physics, 12, 3363 (2010)

Hydration of nucleic acid bases: a Car–Parrinello molecular dynamics approach.

DOI
2010
cited25

New insight on structural properties of hydrated nucleic acid bases from ab initio molecular dynamics

Furmanchuk A., Shishkin O. V., Isayev O., Gorb L., Leszczynski J.

Physical Chemistry Chemical Physics, 12, 9945 (2010)

New insight on structural properties of hydrated nucleic acid bases from ab initio molecular dynamics.

DOI
2010
cited5

Reaction of bicyclo[2.2.1]hept‐5‐ene‐endo‐2‐ylmethylamine and nitrophenyl glycidyl ethers

Kasyan L. I., Prid’ma S. A., Palchikov V. A., Karat L. D., Turov A. V., Isayev O.

Journal of Physical Organic Chemistry, 24, 705–713 (2010)

Reactions Reactivity

AbstractReactions of 2‐nitro‐, 4‐nitro‐ and 2,4‐dinitrophenylglycidyl ethers with bicyclo[2.

DOI
2010
cited46

One-electron standard reduction potentials of nitroaromatic and cyclic nitramine explosives

Uchimiya M., Gorb L., Isayev O., Qasim M. M., Leszczynski J.

Environmental Pollution, 158, 3048–3053 (2010)

One-electron standard reduction potentials of nitroaromatic and cyclic nitramine explosives.

DOI

2008

2008
cited97

Ab Initio Molecular Dynamics Study on the Initial Chemical Events in Nitramines: Thermal Decomposition of CL-20

Isayev O., Gorb L., Qasim M., Leszczynski J.

The Journal of Physical Chemistry B, 112, 11005–11013 (2008)

Ab Initio Molecular Dynamics Study on the Initial Chemical Events in Nitramines: Thermal Decomposition of CL-20.

DOI
2008
cited7

Efficient and accurate ab initio prediction of thermodynamic parameters for intermolecular complexes

Isayev O., Furmanchuk A., Gorb L., Leszczynski J.

Chemical Physics Letters, 451, 147–152 (2008)

Efficient and accurate ab initio prediction of thermodynamic parameters for intermolecular complexes.

DOI

2007

2007
cited25

Are Isolated Nucleic Acid Bases Really Planar? A Car−Parrinello Molecular Dynamics Study

Isayev O., Furmanchuk A., Shishkin O. V., Gorb L., Leszczynski J.

The Journal of Physical Chemistry B, 111, 3476–3480 (2007)

Are Isolated Nucleic Acid Bases Really Planar? A Car−Parrinello Molecular Dynamics Study.

DOI
2007
cited6

Electronic Structure and Bonding of Fe(PhNO2)6 Complexes: A Density Functional Theory Study

Isayev O., Gorb L., Zilberberg I., Leszczynski J.

The Journal of Physical Chemistry A, 111 (2007)

Electronic Structure and Bonding of Fe(PhNO2)., pages=3571–3576

DOI
2007
cited41

Theoretical calculations: Can Gibbs free energy for intermolecular complexes be predicted efficiently and accurately?

Isayev O., Gorb L., Leszczynski J.

Journal of Computational Chemistry, 28, 1598–1609 (2007)

Quantum Chemistry
Ml Potentials

AbstractThe theoretical study has been performed to refine the procedure for calculations of Gibbs free energy with a relative accuracy of less than 1 kcal/mol.

DOI
2007
cited8

Carboxamides and amines having two and three adamantane fragments

Kas’yan L. I., Karpenko D. V., Kas’yan A. O., Isaev A. K., Prid’ma S. A.

Russian Journal of Organic Chemistry, 43, 1642–1650 (2007)

Carboxamides and amines having two and three adamantane fragments.

DOI

2006

2006
cited89

Structure-toxicity relationships of nitroaromatic compounds: Full-length paper

Isayev O., Rasulev B., Gorb L., Leszczynski J.

Molecular Diversity, 10, 233–245 (2006)

Structure-toxicity relationships of nitroaromatic compounds: Full-length paper.

DOI

2005

2005
cited15

Acylation of Aminopyridines and Related Compounds with Endic Anhydride

Kas’yan L. I., Tarabara I. N., Pal’chikov V. A., Krishchik O. V., Isaev A. K., Kas’yan A. O.

Russian Journal of Organic Chemistry, 41, 1530–1538 (2005)

Acylation of Aminopyridines and Related Compounds with Endic Anhydride.

DOI
2005
cited4

Synthesis and Reactivity of Amines Containing Several Cage-like Fragments

Kas’yan L. I., Karpenko D. V., Kas’yan A. O., Isaev A. K.

Russian Journal of Organic Chemistry, 41, 678–688 (2005)

Reactions Reactivity

Synthesis and Reactivity of Amines Containing Several Cage-like Fragments.

DOI

2004

2004
cited5

Amides containing two norbornene fragments. Synthesis and chemical transformations

Kas?yan L. I., Isaev A. K., Kas?yan A. O., Golodaeva E. A., Karpenko D. V., Tarabara I. N.

Russian Journal of Organic Chemistry, 40, 1415–1426 (2004)

Amides containing two norbornene fragments. Synthesis and chemical transformations.

DOI
2004
cited4

Reaction of Endic Anhydride with Hydrazines and Acylhydrazines

Krishchik O. V., Tarabara I. N., Kas’yan A. O., Shishkina S. V., Shishkin O. V., Isaev A. K., Kas’yan L.

Russian Journal of Organic Chemistry, 40, 1140–1145 (2004)

Reaction of Endic Anhydride with Hydrazines and Acylhydrazines.

DOI
2004
cited9

Modeling the Gas-Phase Reduction of Nitrobenzene to Nitrosobenzene by Iron Monoxide: A Density Functional Theory Study

Zilberberg I., Ilchenko M., Isayev O., Gorb L., Leszczynski J.

The Journal of Physical Chemistry A, 108, 4878–4886 (2004)

Modeling the Gas-Phase Reduction of Nitrobenzene to Nitrosobenzene by Iron Monoxide: A Density Functional Theory Study.

DOI

2003

2003
cited4

Amino Alcohols with Bicyclic Carbon Skeleton. Alternative Functionalization of Nucleophilic Reaction Centers

Kas’yan L. I., Golodaeva E. A., Kas’yan A. O., Isaev A. K.

Russian Journal of Organic Chemistry, 39, 1398–1405 (2003)

Amino Alcohols with Bicyclic Carbon Skeleton. Alternative Functionalization of Nucleophilic Reaction Centers.

DOI

2002

2002
cited4

New N-(Arylsulfonyl)-5-aminomethylbicyclo[2.2.1]hept-2-enes. Synthesis, 1H and 13C NMR Spectra, and Chemical Reactions

Kas’yan A. O., Isaev A. K., Kas’yan L. I.

Russian Journal of Organic Chemistry, 38, 553–563 (2002)

Reactions Reactivity

New N-(Arylsulfonyl)-5-aminomethylbicyclo[2.2.1]hept-2-enes. Synthesis, 1H and 13C NMR Spectra, and Chemical Reactions.

DOI