2024

Discovery of Crystallizable Organic Semiconductors with Machine Learning

Johnson, Holly M.; Gusev, Filipp; Dull, Jordan T.; Seo, Yejoon; Priestley, Rodney D.; Isayev, Olexandr; Rand, Barry P.

Discovery of Crystallizable Organic Semiconductors with Machine Learning Journal Article

In: J. Am. Chem. Soc., vol. 146, no. 31, pp. 21583–21590, 2024, ISSN: 1520-5126.

Abstract | Links | BibTeX | Tags: Active learning, Crystal structure

Uncertainty-Aware Yield Prediction with Multimodal Molecular Features

Chen, Jiayuan; Guo, Kehan; Liu, Zhen; Isayev, Olexandr; Zhang, Xiangliang

Uncertainty-Aware Yield Prediction with Multimodal Molecular Features Journal Article

In: AAAI, vol. 38, no. 8, pp. 8274–8282, 2024, ISSN: 2374-3468.

Abstract | Links | BibTeX | Tags: Organic reactions

Exploring the frontiers of condensed-phase chemistry with a general reactive machine learning potential

Zhang, Shuhao; Makoś, Małgorzata Z.; Jadrich, Ryan B.; Kraka, Elfi; Barros, Kipton; Nebgen, Benjamin T.; Tretiak, Sergei; Isayev, Olexandr; Lubbers, Nicholas; Messerly, Richard A.; Smith, Justin S.

Exploring the frontiers of condensed-phase chemistry with a general reactive machine learning potential Journal Article

In: Nat. Chem., 2024.

Abstract | Links | BibTeX | Tags: Active learning, ANI, Organic reactions

De novo molecule design towards biased properties via a deep generative framework and iterative transfer learning

Sattari, Kianoosh; Li, Dawei; Kalita, Bhupalee; Xie, Yunchao; Lighvan, Fatemeh Barmaleki; Isayev, Olexandr; Lin, Jian

De novo molecule design towards biased properties via a deep generative framework and iterative transfer learning Journal Article

In: Digital Discovery, vol. 3, no. 2, pp. 410–421, 2024.

Abstract | Links | BibTeX | Tags: Active learning, Generative AI

MLatom 3: A Platform for Machine Learning-Enhanced Computational Chemistry Simulations and Workflows

Dral, Pavlo O.; Ge, Fuchun; Hou, Yi-Fan; Zheng, Peikun; Chen, Yuxinxin; Barbatti, Mario; Isayev, Olexandr; Wang, Cheng; Xue, Bao-Xin; Jr, Max Pinheiro; Su, Yuming; Dai, Yiheng; Chen, Yangtao; Zhang, Lina; Zhang, Shuang; Ullah, Arif; Zhang, Quanhao; Ou, Yanchi

MLatom 3: A Platform for Machine Learning-Enhanced Computational Chemistry Simulations and Workflows Journal Article

In: J. Chem. Theory Comput., vol. 20, no. 3, pp. 1193–1213, 2024.

Abstract | Links | BibTeX | Tags: ANI, Machine learning potential

Integrating QSAR modelling and deep learning in drug discovery: the emergence of deep QSAR

Tropsha, Alexander; Isayev, Olexandr; Varnek, Alexandre; Schneider, Gisbert; Cherkasov, Artem

Integrating QSAR modelling and deep learning in drug discovery: the emergence of deep QSAR Journal Article

In: Nat Rev Drug Discov, vol. 23, no. 2, pp. 141–155, 2024.

Abstract | Links | BibTeX | Tags: Drug Discovery, Generative AI, Review

2023

Δ2 machine learning for reaction property prediction

Zhao, Qiyuan; Anstine, Dylan M.; Isayev, Olexandr; Savoie, Brett M.

Δ2 machine learning for reaction property prediction Journal Article

In: Chem. Sci., vol. 14, no. 46, pp. 13392–13401, 2023.

Abstract | Links | BibTeX | Tags: AIMNet, Machine learning potential, Organic reactions

The challenge of balancing model sensitivity and robustness in predicting yields: a benchmarking study of amide coupling reactions

Liu, Zhen; Moroz, Yurii S.; Isayev, Olexandr

The challenge of balancing model sensitivity and robustness in predicting yields: a benchmarking study of amide coupling reactions Journal Article

In: Chem. Sci., vol. 14, no. 39, pp. 10835–10846, 2023.

Abstract | Links | BibTeX | Tags: AIMNet, Organic reactions

Synergy of semiempirical models and machine learning in computational chemistry

Fedik, Nikita; Nebgen, Benjamin; Lubbers, Nicholas; Barros, Kipton; Kulichenko, Maksim; Li, Ying Wai; Zubatyuk, Roman; Messerly, Richard; Isayev, Olexandr; Tretiak, Sergei

Synergy of semiempirical models and machine learning in computational chemistry Journal Article

In: J. Chem. Phys., vol. 159, no. 11, pp. 110901 , 2023.

Abstract | Links | BibTeX | Tags: Machine learning potential, Review

Structure Prediction of Epitaxial Organic Interfaces with Ogre, Demonstrated for Tetracyanoquinodimethane (TCNQ) on Tetrathiafulvalene (TTF)

Moayedpour, Saeed; Bier, Imanuel; Wen, Wen; Dardzinski, Derek; Isayev, Olexandr; Marom, Noa

Structure Prediction of Epitaxial Organic Interfaces with Ogre, Demonstrated for Tetracyanoquinodimethane (TCNQ) on Tetrathiafulvalene (TTF) Journal Article

In: J. Phys. Chem. C, vol. 127, no. 21, pp. 10398–10410, 2023.

Abstract | Links | BibTeX | Tags: Crystal structure, Machine learning potential

Scalable hybrid deep neural networks/polarizable potentials biomolecular simulations including long-range effects

Inizan, Théo Jaffrelot; Plé, Thomas; Adjoua, Olivier; Ren, Pengyu; Gökcan, Hatice; Isayev, Olexandr; Lagardère, Louis; Piquemal, Jean-Philip

Scalable hybrid deep neural networks/polarizable potentials biomolecular simulations including long-range effects Journal Article

In: Chem. Sci., vol. 14, no. 20, pp. 5438–5452, 2023.

Abstract | Links | BibTeX | Tags: ANI, Machine learning potential

Generative Models as an Emerging Paradigm in the Chemical Sciences

Anstine, Dylan M.; Isayev, Olexandr

Generative Models as an Emerging Paradigm in the Chemical Sciences Journal Article

In: J. Am. Chem. Soc., vol. 145, no. 16, pp. 8736–8750, 2023.

Abstract | Links | BibTeX | Tags: Drug Discovery, Generative AI, Review, RL

Machine Learning Interatomic Potentials and Long-Range Physics

Anstine, Dylan M.; Isayev, Olexandr

Machine Learning Interatomic Potentials and Long-Range Physics Journal Article

In: J. Phys. Chem. A, vol. 127, no. 11, pp. 2417–2431, 2023, ISSN: 1520-5215.

Abstract | Links | BibTeX | Tags: AIMNet, ANI, Machine learning potential, Review

Comprehensive exploration of graphically defined reaction spaces

Zhao, Qiyuan; Vaddadi, Sai Mahit; Woulfe, Michael; Ogunfowora, Lawal A.; Garimella, Sanjay S.; Isayev, Olexandr; Savoie, Brett M.

Comprehensive exploration of graphically defined reaction spaces Journal Article

In: Sci Data, vol. 10, pp. 145 , 2023.

Abstract | Links | BibTeX | Tags: dataset, Organic reactions

Active Learning Guided Drug Design Lead Optimization Based on Relative Binding Free Energy Modeling

Gusev, Filipp; Gutkin, Evgeny; Kurnikova, Maria G.; Isayev, Olexandr

Active Learning Guided Drug Design Lead Optimization Based on Relative Binding Free Energy Modeling Journal Article

In: J. Chem. Inf. Model., vol. 63, no. 2, pp. 583–594, 2023.

Abstract | Links | BibTeX | Tags: Active learning, Drug Discovery

2022

Auto3D: Automatic Generation of the Low-Energy 3D Structures with ANI Neural Network Potentials

Liu, Zhen; Zubatiuk, Tetiana; Roitberg, Adrian; Isayev, Olexandr

Auto3D: Automatic Generation of the Low-Energy 3D Structures with ANI Neural Network Potentials Journal Article

In: J. Chem. Inf. Model., vol. 62, no. 22, pp. 5373–5382, 2022.

Abstract | Links | BibTeX | Tags: ANI, Drug Discovery

Extending machine learning beyond interatomic potentials for predicting molecular properties

Fedik, Nikita; Zubatyuk, Roman; Kulichenko, Maksim; Lubbers, Nicholas; Smith, Justin S.; Nebgen, Benjamin; Messerly, Richard; Li, Ying Wai; Boldyrev, Alexander I.; Barros, Kipton; Isayev, Olexandr; Tretiak, Sergei

Extending machine learning beyond interatomic potentials for predicting molecular properties Journal Article

In: Nat Rev Chem, vol. 6, no. 9, pp. 653–672, 2022.

Abstract | Links | BibTeX | Tags: Machine learning potential, Review

Learning molecular potentials with neural networks

Gokcan, Hatice; Isayev, Olexandr

Learning molecular potentials with neural networks Journal Article

In: WIREs Comput Mol Sci, vol. 12, no. 2, pp. e1564, 2022.

Abstract | Links | BibTeX | Tags: ANI, Machine learning potential, Review

Roadmap on Machine learning in electronic structure

Kulik, H J; Hammerschmidt, T; Schmidt, J; Botti, S; Marques, M A L; Boley, M; Scheffler, M; Todorović, M; Rinke, P; Oses, C; Smolyanyuk, A; Curtarolo, S; Tkatchenko, A; Bartók, A P; Manzhos, S; Ihara, M; Carrington, T; Behler, J; Isayev, O; Veit, M; Grisafi, A; Nigam, J; Ceriotti, M; Schütt, K T; Westermayr, J; Gastegger, M; Maurer, R J; Kalita, B; Burke, K; Nagai, R; Akashi, R; Sugino, O; Hermann, J; Noé, F; Pilati, S; Draxl, C; Kuban, M; Rigamonti, S; Scheidgen, M; Esters, M; Hicks, D; Toher, C; Balachandran, P V; Tamblyn, I; Whitelam, S; Bellinger, C; Ghiringhelli, L M

Roadmap on Machine learning in electronic structure Journal Article

In: Electron. Struct., vol. 4, no. 2, pp. 023004, 2022.

Abstract | Links | BibTeX | Tags: Machine learning potential, Materials informatics, Review

Toward Chemical Accuracy in Predicting Enthalpies of Formation with General-Purpose Data-Driven Methods

Zheng, Peikun; Yang, Wudi; Wu, Wei; Isayev, Olexandr; Dral, Pavlo O.

Toward Chemical Accuracy in Predicting Enthalpies of Formation with General-Purpose Data-Driven Methods Journal Article

In: J. Phys. Chem. Lett., vol. 13, no. 15, pp. 3479–3491, 2022.

Abstract | Links | BibTeX | Tags: ANI, Machine learning potential

Generative and reinforcement learning approaches for the automated de novo design of bioactive compounds

Korshunova, Maria; Huang, Niles; Capuzzi, Stephen; Radchenko, Dmytro S.; Savych, Olena; Moroz, Yuriy S.; Wells, Carrow I.; Willson, Timothy M.; Tropsha, Alexander; Isayev, Olexandr

Generative and reinforcement learning approaches for the automated de novo design of bioactive compounds Journal Article

In: Commun Chem, vol. 5, no. 1, pp. 129 , 2022.

Abstract | Links | BibTeX | Tags: Drug Discovery, Generative AI, RL

The transformational role of GPU computing and deep learning in drug discovery

Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem

The transformational role of GPU computing and deep learning in drug discovery Journal Article

In: Nat Mach Intell, vol. 4, no. 3, pp. 211–221, 2022.

Abstract | Links | BibTeX | Tags: Drug Discovery, Review

Prediction of protein pKawith representation learning

Gokcan, Hatice; Isayev, Olexandr

Prediction of protein pKawith representation learning Journal Article

In: Chem. Sci., vol. 13, no. 8, pp. 2462–2474, 2022.

Abstract | Links | BibTeX | Tags: ANI, Drug Discovery

2021

Artificial intelligence-enhanced quantum chemical method with broad applicability

Zheng, Peikun; Zubatyuk, Roman; Wu, Wei; Isayev, Olexandr; Dral, Pavlo O.

Artificial intelligence-enhanced quantum chemical method with broad applicability Journal Article

In: Nat Commun, vol. 12, pp. 7022 , 2021, ISSN: 2041-1723.

Abstract | Links | BibTeX | Tags: ANI, Machine learning potential

Machine-Learning-Guided Discovery of 19F MRI Agents Enabled by Automated Copolymer Synthesis

Reis, Marcus; Gusev, Filipp; Taylor, Nicholas G.; Chung, Sang Hun; Verber, Matthew D.; Lee, Yueh Z.; Isayev, Olexandr; Leibfarth, Frank A.

Machine-Learning-Guided Discovery of 19F MRI Agents Enabled by Automated Copolymer Synthesis Journal Article

In: J. Am. Chem. Soc., vol. 143, no. 42, pp. 17677–17689, 2021, ISSN: 1520-5126.

Abstract | Links | BibTeX | Tags: Materials informatics, Science automation

A critical overview of computational approaches employed for COVID-19 drug discovery

Muratov, Eugene N.; Amaro, Rommie; Andrade, Carolina H.; Brown, Nathan; Ekins, Sean; Fourches, Denis; Isayev, Olexandr; Kozakov, Dima; Medina-Franco, José L.; Merz, Kenneth M.; Oprea, Tudor I.; Poroikov, Vladimir; Schneider, Gisbert; Todd, Matthew H.; Varnek, Alexandre; Winkler, David A.; Zakharov, Alexey V.; Cherkasov, Artem; Tropsha, Alexander

A critical overview of computational approaches employed for COVID-19 drug discovery Journal Article

In: Chem. Soc. Rev., vol. 50, no. 16, pp. 9121–9151, 2021, ISSN: 1460-4744.

Abstract | Links | BibTeX | Tags: COVID19

Harnessing the Power of Smart and Connected Health to Tackle COVID-19: IoT, AI, Robotics, and Blockchain for a Better World

Firouzi, Farshad; Farahani, Bahar; Daneshmand, Mahmoud; Grise, Kathy; Song, Jaeseung; Saracco, Roberto; Wang, Lucy Lu; Lo, Kyle; Angelov, Plamen; Soares, Eduardo; Loh, Po-Shen; Talebpour, Zeynab; Moradi, Reza; Goodarzi, Mohsen; Ashraf, Haleh; Talebpour, Mohammad; Talebpour, Alireza; Romeo, Luca; Das, Rupam; Heidari, Hadi; Pasquale, Dana; Moody, James; Woods, Chris; Huang, Erich S.; Barnaghi, Payam; Sarrafzadeh, Majid; Li, Ron; Beck, Kristen L.; Isayev, Olexandr; Sung, Nakmyoung; Luo, Alan

Harnessing the Power of Smart and Connected Health to Tackle COVID-19: IoT, AI, Robotics, and Blockchain for a Better World Journal Article

In: IEEE Internet Things J., vol. 8, no. 16, pp. 12826–12846, 2021, ISSN: 2327-4662.

Abstract | Links | BibTeX | Tags: COVID19

Teaching a neural network to attach and detach electrons from molecules

Zubatyuk, Roman; Smith, Justin S.; Nebgen, Benjamin T.; Tretiak, Sergei; Isayev, Olexandr

Teaching a neural network to attach and detach electrons from molecules Journal Article

In: Nat Commun, vol. 12, no. 1, 2021, ISSN: 2041-1723.

Abstract | Links | BibTeX | Tags: AIMNet, Machine learning potential

Active Learning in Bayesian Neural Networks for Bandgap Predictions of Novel Van der Waals Heterostructures

Fronzi, Marco; Isayev, Olexandr; Winkler, David A.; Shapter, Joseph G.; Ellis, Amanda V.; Sherrell, Peter C.; Shepelin, Nick A.; Corletto, Alexander; Ford, Michael J.

Active Learning in Bayesian Neural Networks for Bandgap Predictions of Novel Van der Waals Heterostructures Journal Article

In: Advanced Intelligent Systems, vol. 3, no. 11, 2021, ISSN: 2640-4567.

Abstract | Links | BibTeX | Tags: Materials informatics

Machine learned Hückel theory: Interfacing physics and deep neural networks

Zubatiuk, Tetiana; Nebgen, Benjamin; Lubbers, Nicholas; Smith, Justin S.; Zubatyuk, Roman; Zhou, Guoqing; Koh, Christopher; Barros, Kipton; Isayev, Olexandr; Tretiak, Sergei

Machine learned Hückel theory: Interfacing physics and deep neural networks Journal Article

In: vol. 154, no. 24, 2021, ISSN: 1089-7690.

Abstract | Links | BibTeX | Tags: Machine learning potential

Best practices in machine learning for chemistry

Artrith, Nongnuch; Butler, Keith T.; Coudert, François-Xavier; Han, Seungwu; Isayev, Olexandr; Jain, Anubhav; Walsh, Aron

Best practices in machine learning for chemistry Journal Article

In: Nat. Chem., vol. 13, no. 6, pp. 505–508, 2021, ISSN: 1755-4349.

Abstract | Links | BibTeX | Tags: Machine learning potential, Review

Crowdsourced mapping of unexplored target space of kinase inhibitors

Cichońska, Anna; Ravikumar, Balaguru; Allaway, Robert J.; Wan, Fangping; Park, Sungjoon; Isayev, Olexandr; Li, Shuya; Mason, Michael; Lamb, Andrew; Tanoli, Ziaurrehman; Jeon, Minji; Kim, Sunkyu; Popova, Mariya; Capuzzi, Stephen; Zeng, Jianyang; Dang, Kristen; Koytiger, Gregory; Kang, Jaewoo; Wells, Carrow I.; Willson, Timothy M.; Tan, Mehmet; Huang, Chih-Han; Shih, Edward S. C.; Chen, Tsai-Min; Wu, Chih-Hsun; Fang, Wei-Quan; Chen, Jhih-Yu; Hwang, Ming-Jing; Wang, Xiaokang; Guebila, Marouen Ben; Shamsaei, Behrouz; Singh, Sourav; Nguyen, Thin; Karimi, Mostafa; Wu, Di; Wang, Zhangyang; Shen, Yang; Öztürk, Hakime; Ozkirimli, Elif; Özgür, Arzucan; Lim, Hansaim; Xie, Lei; Kanev, Georgi K.; Kooistra, Albert J.; Westerman, Bart A.; Terzopoulos, Panagiotis; Ntagiantas, Konstantinos; Fotis, Christos; Alexopoulos, Leonidas; Boeckaerts, Dimitri; Stock, Michiel; Baets, Bernard De; Briers, Yves; Luo, Yunan; Hu, Hailin; Peng, Jian; Dogan, Tunca; Rifaioglu, Ahmet S.; Atas, Heval; Atalay, Rengul Cetin; Atalay, Volkan; Martin, Maria J.; Jeon, Minji; Lee, Junhyun; Yun, Seongjun; Kim, Bumsoo; Chang, Buru; Turu, Gábor; Misák, Ádám; Szalai, Bence; Hunyady, László; Lienhard, Matthias; Prasse, Paul; Bachmann, Ivo; Ganzlin, Julia; Barel, Gal; Herwig, Ralf; Oršolić, Davor; Lučić, Bono; Stepanić, Višnja; Šmuc, Tomislav; Oprea, Tudor I.; Schlessinger, Avner; Drewry, David H.; Stolovitzky, Gustavo; Wennerberg, Krister; Guinney, Justin; Aittokallio, Tero

Crowdsourced mapping of unexplored target space of kinase inhibitors Journal Article

In: Nat Commun, vol. 12, pp. 3307 , 2021.

Abstract | Links | BibTeX | Tags: Drug Discovery

Development of Multimodal Machine Learning Potentials: Toward a Physics-Aware Artificial Intelligence

Zubatiuk, Tetiana; Isayev, Olexandr

Development of Multimodal Machine Learning Potentials: Toward a Physics-Aware Artificial Intelligence Journal Article

In: Acc. Chem. Res., vol. 54, no. 7, pp. 1575–1585, 2021, ISSN: 1520-4898.

Links | BibTeX | Tags: AIMNet, Machine learning potential

OpenChem: A Deep Learning Toolkit for Computational Chemistry and Drug Design

Korshunova, Maria; Ginsburg, Boris; Tropsha, Alexander; Isayev, Olexandr

OpenChem: A Deep Learning Toolkit for Computational Chemistry and Drug Design Journal Article

In: J. Chem. Inf. Model., vol. 61, no. 1, pp. 7–13, 2021, ISSN: 1549-960X.

Abstract | Links | BibTeX | Tags: Drug Discovery

2020

TorchANI: A Free and Open Source PyTorch-Based Deep Learning Implementation of the ANI Neural Network Potentials

Gao, Xiang; Ramezanghorbani, Farhad; Isayev, Olexandr; Smith, Justin S.; Roitberg, Adrian E.

TorchANI: A Free and Open Source PyTorch-Based Deep Learning Implementation of the ANI Neural Network Potentials Journal Article

In: J. Chem. Inf. Model., vol. 60, no. 7, pp. 3408–3415, 2020.

Links | BibTeX | Tags: ANI, Machine learning potential

Extending the Applicability of the ANI Deep Learning Molecular Potential to Sulfur and Halogens

Devereux, Christian; Smith, Justin S.; Huddleston, Kate K.; Barros, Kipton; Zubatyuk, Roman; Isayev, Olexandr; Roitberg, Adrian E.

Extending the Applicability of the ANI Deep Learning Molecular Potential to Sulfur and Halogens Journal Article

In: J. Chem. Theory Comput., vol. 16, no. 7, pp. 4192–4202, 2020, ISSN: 1549-9626.

Abstract | Links | BibTeX | Tags: ANI, Machine learning potential

The ANI-1ccx and ANI-1x data sets, coupled-cluster and density functional theory properties for molecules

Smith, Justin S.; Zubatyuk, Roman; Nebgen, Benjamin; Lubbers, Nicholas; Barros, Kipton; Roitberg, Adrian E.; Isayev, Olexandr; Tretiak, Sergei

The ANI-1ccx and ANI-1x data sets, coupled-cluster and density functional theory properties for molecules Journal Article

In: Sci Data, vol. 7, no. 1, 2020, ISSN: 2052-4463.

Abstract | Links | BibTeX | Tags: ANI, dataset, Machine learning potential

2017

ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost

Smith, Justin S.; Isayev, Olexandr; Roitberg, Adrian E.

ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost Journal Article

In: Chemical Science, iss. 8, pp. 3192-3203, 2017.

Abstract | Links | BibTeX | Tags: ANI, Machine learning potential