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CONSPECTUS: Machine learning interatomic potentials
(MLIPs) are widely used for describing molecular energy and
continue bridging the speed and accuracy gap between quantum
mechanical (QM) and classical approaches like force fields. In this
Account, we focus on the out-of-the-box approaches to developing
transferable MLIPs for diverse chemical tasks. First, we introduce
the “Accurate Neural Network engine for Molecular Energies,”
ANAKIN-ME, method (or ANI for short). The ANI model utilizes
Justin Smith Symmetry Functions (JSSFs) and realizes training for
vast data sets. The training data set of several orders of magnitude
larger than before has become the key factor of the knowledge
transferability and flexibility of MLIPs. As the quantity, quality, and
types of interactions included in the training data set will dictate the accuracy of MLIPs, the task of proper data selection and model
training could be assisted with advanced methods like active learning (AL), transfer learning (TL), and multitask learning (MTL).
Next, we describe the AIMNet “Atoms-in-Molecules Network” that was inspired by the quantum theory of atoms in molecules. The
AIMNet architecture lifts multiple limitations in MLIPs. It encodes long-range interactions and learnable representations of chemical
elements. We also discuss the AIMNet-ME model that expands the applicability domain of AIMNet from neutral molecules toward
open-shell systems. The AIMNet-ME encompasses a dependence of the potential on molecular charge and spin. It brings ML and
physical models one step closer, ensuring the correct molecular energy behavior over the total molecular charge.

We finally describe perhaps the simplest possible physics-aware model, which combines ML and the extended Hiickel method. In
ML-EHM, “Hierarchically Interacting Particle Neural Network,” HIP-NN generates the set of a molecule- and environment-
dependent Hamiltonian elements a,, and K*. As a test example, we show how in contrast to traditional Hiickel theory, ML-EHM
correctly describes orbital crossing with bond rotations. Hence it learns the underlying physics, highlighting that the inclusion of
proper physical constraints and symmetries could significantly improve ML model generalization.
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Table 1. Main Computational Distinctions among QM and ML-QM Methods

method scaling time scale of simulations

physics M ~O(N>7) ps—ns

semiempirical ~0(N?) ns

force fields ~0(N'2) ps—ms
ML kernel methods ~O(N%) ns

HDNNP ~0O(N'"2) us

ANI ~O(N'™2) us

AIMNet ~0(N'2) us
physics + ML ? ? ps—ms

a

training data req  transferability accuracy  algorithms for improvements
high high
low medium medium refitting
medium variable low refitting
medium low variable AP AL
medium low variable A, AL
high medium variable A, AL, TL
high medium variable A, AL, TL, MTL
low high high all of the above

“Transferability is defined as the ability to transfer the knowledge of a model trained from one data domain to the other data domain. bA-Learning

(see section 2 for details).

10.26434/chemrxiv.12725276.v1.* Extension of AIMNet
framework toward open-shell molecular systems. AIMNet-
Me examines a new dimension of transferability by including
charge-spin space and feasibility to model conceptual DFT
quantities without QM.

1. INTRODUCTION

“If, in some cataclysm, all of scientific knowledge were to be
destroyed, and only one sentence passed on to the next generation of
creatures, what statement would contain the most information in the
Sfewest words? I believe it is theatomic hypothesisthat all things are
made of atoms. In that one sentence, you will see, there is an
enormous amount of information about the world, if just a little
imagination and thinking are applied.”” (Richard P. Feynman).
The crucial property of atoms that determines that enormous
amount of information is how they interact. Specifically, what is
their interatomic potential (IP)? This question can be answered
from the first-principle or ab initio by solving the Schrodinger
equation (SE). While this is undoubtedly the most reliable
approach, there is a practical reason for speed to consider
simpler approximations that capture quantum mechanics’
essential physics.

The computational costs of accurate quantum mechanical
(QM) calculations scale exponentially with system size. Since
the dimension of the wave function of methods such as
configuration interaction® (CI) or coupled cluster’ (CC) hits a
performance wall with only tens of atoms, large systems
simulation is impossible. Application of ab initio electronic
structure calculations for large molecular systems (10°—10°
atoms) leads to the computations of such a formidable order
of magnitude that it would seem hopeless to tackle them without
the new approaches. In general, the simpler descriptions or
alternative representations of IPs could give a systematic view of
the complex and, at first glance, incomparable data. Today, the
latter statement is even more relevant. Density functional theory
(DFT)® and QM calculations of the electronic structure have
vastly extended the body of accurate data available for training
data sets generation. Keeping in mind only two mentioned
reasons, the recent remarkable progress in numerical computa-
tions in physical and chemical science becomes apparent. The
importance of skillful numerical analysis in chemistry was
shrewdly pointed out by Léwdin” over half a century ago when
quantum chemistry started to explore areas beyond the study of
single molecules to systems of biological interest.

From the mathematical point of view, problems of complex
chemical systems can be described by linear or nonlinear
functions. One of the most popular statistical methods to
analyze linear problems is partial least-squares'® (PLS) analysis.
In a single-component system, for example, the IP is linear in
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relation to the unknown variables and it is easy to fit them using
PLS. However, the IP becomes nonlinear in a multicomponent
system. In this case, a nonlinear function of several variables
could be efficiently approximated with artificial neural networks
(NNs)."' =" NNs provide accurate results for complex non-
linear problems and reduce the computational work associated
with a given calculation.

As seen from the above, the idea to somehow construct the
IPs, not in terms of quantum theory but utilizing regression, was
inspired by the technical innovations and development of
statistical analysis. With the pioneering work of Doren et al.,'*
the field of NN potentials (NNPs) for the representation of
potential energy surfaces (PESs) has become an independent
area of research. Since then, many variations on NNPs have been
introduced. The first NNPs'*'® accurately reproduced only the
regions near the minima on the PES (“low- dimensional” NNPs)
of the small molecular systems. The subsequent introduction of
“high-dimensional” NNPs by Behler and Parrinello'®
(HDNNP) has enabled studies for molecular systems of
thousands of atoms. The first HDNNP was designed for bulk
silicon.’® It introduced Behler and Parrinello symmetry
functions (BPSFs) as a structural fingerprint. The main idea of
BPSF was to describe the relevant local environment of each
atom as an atomic environment vector (AEV) and subsequently
transform AEVs as input for the HDNN. However, applications
of HDNNPs were limited by the homogeneity of the atomic
environment of the studied chemical systems. This caused a lack
of transferability and limited HDNNPs to simulations of a single
chemical system at a time. In other words, HDNNPs need to be
retrained for every individual application.

It should be noted that, besides NNPs, IPs have also been
developed with many other ML methods. For example,
Gaussian approximation potentials,'” kernel ridge regression,®
and support vector machines'” are widely used to construct PES.
A comprehensive review of the MLIPs recent advances was
given elsewhere.”® A presentation of the theory behind NN and
modern deep learning”" is beyond the scope of this Account too.
Therefore, we will focus this Account on the pursuit of universal
HDNNPs undertaken by our group, identifying advanced
construction methods. On this destination, we discuss automatic
active learning (AL),”* transfer learning (TL),> and multitask
learning (MTL)" techniques for sampling vast chemical space or
taking advantage of different approximations to SE.

2. MACHINE LEARNED INTERATOMIC POTENTIAL,
MLIP

The IP U(ry,ry,...,ry) describes the dependence of the potential
energy of a system of N atoms on their coordinates r,,r,,...,"y.
The well-established hierarchy of IPs concerning the structure of

https://dx.doi.org/10.1021/acs.accounts.0c00868
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Figure 1. Structure of the ANT AEVs. The sum of j and k is on all neighbor atoms of selected atoms/pairs. f ¢, cutoff cosine function; R, cutoff radius.
Reprinted with permission from ref 33. Copyright 2020 American Chemical Society.

matter is represented by the increase of sophistication in the
empirical,
semiempirical, and ab initio IPs. The ab initio IPs provide a

description of electron correlation, as follows:

unifying approach for describing the behavior of molecular
systems. Unfortunately, the accessible time scales for QM
simulations are extremely limited (Table 1). Many important
chemical and biological phenomena cannot be modeled with
QM. Meanwhile, the interpolation of ab initio calculations with
NN makes it possible to extend the time scale in molecular
dynamics simulations while maintaining the accuracy of the
reference QM method.">™"® The accessible simulation length of
ML methods, as of today, is approaching a microsecond. Table 1
summarizes the basic features of IPs of different approaches and
shows that MLIPs provide good accuracy and transferability
with comparable computational cost to traditional force fields in
many applications.

The development of accurate and transferable MLIPs is a
challenging task. The optimal procedure for the selection of
either training data or the NN model is not well understood.
Most ML models trained with kernel methods like Kernel ridge
regression or BP-type HDNNPs are parametrized to specific
chemical systems. Despite the fact, the MLIPs achieve high
accuracy with small training data (~10°—10° samples). Their
downside that one must retrain new IPs for every new chemical
application and generate new QM training data.

The ANI and AIMNet models show our attempts to design
universal MLIPs for neutral organic molecules. Our key
innovations are increasing the angular-radial resolution of
AEV descriptors and radical increasing training data set sizes
up to 10°—10". These two features force the NN to learn low-
level interatomic interaction and transferability between differ-
ent classes of molecules.
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2.1. ANAKIN-ME Neural Network Potential (ANI)

Justin Smith Symmetry Functions or JSSFs. Similar to
many-body potential, standard HDNNP models the total energy
of a molecule as a sum over local contributions at each atom.
Meanwhile, in contrast to many-body expansion, HDNNPs is
not a rigid functional expression but a flexible nonlinear ML
model. The key point of such expression is the introduction of
special type coordinates, which are appeared to be invariant to
the exchange of equivalent atoms along with translation and
rotation of the system. Those special type coordinates are called
symmetry functions, and they are many-body functions of all
atomic positions inside the cutoff spheres. While many different
types of transformed coordlnates are known,”*~*” ANI approach
implements the idea of BPSFs'® and encodes the arrangement of
atoms in a molecule in terms of fixed-sized AEV representation.
AEYV introduces the i atom in the molecule in terms of its (i)
local structure described by a set of coordinates of all atoms
within a cutoff distance and the (ii) local chemical composition
given by the types of chemical elements. With the ANI model,
we have introduced Justin Smith Symmetry Functions or JSSFs.'

Similarly to BPSFs, JSSFs encode the atomic configurations
using interatomic distances with i atom nelghbors within a
cutoff radius R into invariant fixed-length AEV, G ={G, G,
Gy, Gy} Elements Gy, probe specific regions of i'" atom radial
and angular chemical environment. Each ith atom with atomic
number Z is encoded with vector GZ Vector GZ is then used as
input of a single NN. With invariant AEV G1 , the total HDNNP
energy of a molecule m is expressed as

all atoms

-7
Etotal(m) = Z NNPZi(Gi )
i (1)
The form of é,z vectors defines the flexibility and transferability
of the HDNNPs. The BP-type AVEs either do not account for
the type of neighboring atoms or account for them with separate

https://dx.doi.org/10.1021/acs.accounts.0c00868
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sub-AEVs. The latter is done with the “one-hot encoding,” which
assigns each atom type its orthogonal bit vector. The size of the
radial AEV grows as O(N?) with the number of atom types and
causes a corresponding growth of the complexity of the
HDNNPs. This scaling has so far limited applications of
HDNNPs to molecular systems with up to four types of
atoms, | +1628=30

JSSFs mitigate this problem with decreased complexity of
AEVs and a substantially bigger data set. The angular and radial
parts of JSSFs vectors G are modified with angular shift, 0, and
radial shift, R, hyperparameters. The structure of the JSSFs AEV
is shown in Figure 1. The radial AEV is divided into sub-AEVs
according to atom types (H, C, etc.). Similarly, the angular AEV
is divided into sub-AEVs according to types of atom pairs (HH,
HC, etc.). New parameters 6, and R; allow an arbitrary number
of shifts in the angular and radial environments correspondently.

The effect of JSSFs modification is that AEV elements become
smaller and provide a distinctive image of various molecular
features. JSSFs assist NNs in learning molecular features of
specific bonding patterns, rings, functional groups, or other
molecular moieties. The changes allowed to push the boundary
and develop HDNNPs with up to eight chemical elements.*"**
Interested readers are referred to">> for in-depth technical
discussions.

More generally, this limitation has been solved by introducing
learnable representation, i.e., embedding atomic type information
into fixed-size AEVs. Several alternative approaches were also
proposed in DTNN** SchNet,*® HIP-NN,* and AIMNet’
models. In AIMNet® (see section 3), we introduced atomic
feature vectors (AFVs). The AIMNet model explicitly maintains
the distinction between local structure and local chemical
composition. It uses two sets of invariant vectors that separately
encode the atomic environments and atomic species. The latter
concept provides the constant complexity of AEVs, which does
not scale with the number of chemical elements, and thus
enables high transferability and flexibility of HDNNPs.

2.2. Training Data

Occam’s Razor states: “The simplest explanation compatible
with the observations should be preferred”.”” This principle
argues that simplicity is preferred over complexity. Let us discuss
how the principle of simplicity manifests with ML models of
high complexity. On the one hand, ML uses the so-called
Minimum Description Length (MDL) principle®® for comparing
different ML models and model selection. MDL is based on the
following insight: learning is viewed as data compression
through pattern recognition. Therefore, the more we com-
pressed the data, the more we have learned about it with the
ability to transfer the knowledge to unseen samples.

On the other hand, HDNNPs have an extremely large number
of parameters compared to other ML models. If we use MDL to
measure the complexity of an HDNNP, it will look really bad.
Therefore, such NNs models with high complexity would be
considered overfitted, yet they often obtain high accuracy on test
data. Indeed, one of the central concepts of statistical learning,
the bias-variance trade-off, appears to be at odds with the
observed behavior of HDNNPs. The trade-off between a
model’s ability to minimize prediction errors implies that a
model should balance bias and variance, which means to be rich
enough to reveal real data structure and simple enough to avoid
fitting the noise.”” The apparent contradiction has stimulated to
study this phenomenon. Belkin et al. suggested that NNs do not
work in this regime but follow the “double-descent risk curve.”*”
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The traditional ML uses the U-shape risk curve to measure the
trade-off between bias and variance. It quantifies how general-
izable a model is and is directly linked to model complexity.
Modern deep learning models are heavily overparameterized
and could be easily “overfitted” to reach zero train error. In the
traditional view of bias-variance trade-off, this would result in
catastrophic model performance and the total inability of
generalization. Belkin hypothesized that increasing function
class capacity of a ML model (e.g,, number of parameters or size
of the NN architecture) allows the model to find “simpler”
solutions and thus improve the performance on out-of-sample
examples in the overfitting regime.”” Considering the larger
function classes that enable finding of “simpler” interpolating
functions is a form of Occam’s Razor for NN models. This
hypothesis might rationalize the unreasonable effectiveness of
ANI and AIMNet models vs standard HDNNPs. The overall
ANI architecture is at least 10—50 times more complex (~10°
weights). The HDNNPs are typically heavily regularized and
must be trained in a traditional bias-variance trade-off regime
using a small data set.

The accuracy of MLIPs also critically depends on the amount,
quality, and types of interactions included in the training data
set. With developing transferable HDNNPs, our goal is to
predict energies of the very distinct organic molecules. Ideally,
the training data set should cover a full sampling of
configurations in 3D space and include all conformers of every
possible combination of all atom types in a molecule. Since the
size of the conformational space scales exponentially with the
molecule size, the first generation of ANI or ANI-1 was limited
to the data set of organic molecules with only four atom types: C,
O, N, and H. For practical applicability, we also restricted the
data set to nonequilibrium conformations within ~200 kcal/mol
window. One important aspect should be noted that available
public databases like PubChem, ChEMBL, or GDB cover only
configurational space but not conformational space of the
molecules, while the latter is a critical requirement for the NN
training procedure. The conformation generation process was
carried using two sampling techniques: normal vibrational
modes sampling and molecular dynamics.** Final ANI-1
training data set includes ~22 million molecular energies of
randomly selected molecular conformations. The conforma-
tional space has been generated from GDB*' database for ~58K
molecules with up to 8 types of heavy atoms.

ANI-1x Training Data Set. The second generation of
training data set ANI-1x” is produced through active learning,
AL (see section 2). The size of the ANI-I1x data set was
considerably reduced to ~5 million conformations for CHNO
molecules and 9.5 M for seven elements. Despite the smaller
training data set, the ANI-1x potential vastly outperforms ANI-1.
The ANI-1x data set uses less than 100 conformations per
molecule, compared to ~400 in the ANI-1 data set. The
accuracy of the ANI-1x potential is comparable to that of the
best HDNNPs, while most of the HDNNPs require vast
conformational space for the parametrization. This observation
further validates the “big data” sampling philosophy introduced
in the original ANI-1 work." Moreover, in the ANI-1x training
data set, the mean molecule size is only 15 atoms and it can
therefore be continuously expanded with more accurate post-
Hartree—Fock data.

https://dx.doi.org/10.1021/acs.accounts.0c00868
Acc. Chem. Res. 2021, 54, 1575—1585
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3. ADVANCED METHODS FOR ACCURACY AND
TRANSFERABILITY IMPROVEMENT

The MLIP accuracy could be addressed from two orthogonal
but data-related avenues: quantity and quality of training data.
Active learning, AL, or on-the-fly learning helps one to obtain
good ML models without having to rely on unnecessary large
data sets. In this scenario, the MLIPs transferability problem is
solved by rigorous uncertainty quantification (UQ) and the
selection of poorly predicted samples for a model improvement.
Most studies concur that adaptive AL training is more accurate
and data-efficient than passive learning with fixed training data
set. The quality of training data is dictated by the accuracy of
reference QM calculations. The solution to this issue was found
through transfer learning TL,*>* which could take advantage of
combining the multiple levels of theory. TL has been shown to
reduce the amount of high-quality data required for training.

Active Learning

In the context of MLIP training, AL aims to identify which new
data points should be added during training data set
generations.”” This is done by predicting whether the potential
correctly describes a new molecule. The model outputs the
“yes”/”no” answer to the question of whether to run QM

calculation for this structure or “labeling” the data. Here, the
unlabeled data are abundant, but labeling (getting new QM
energy) is expensive. Different labeling approaches are known
from the literature: Deep Potential Generator (DP-GEN)** and
AL-NN* with a Nested Ensemble Monte Carlo scheme. To
develop ANI-1x MLIP, we have generated the AL training data
set with an updated on-the-fly via Query by Committee
(QBC)* algorithm (Figure 2). QBC iteratively queries a large
chemical space of molecular conformations and samples high
error regions and updates the training pool minimizing the need
for redundant QM calculations. The fully automated AL
workflow for data set generation has three steps: initial data
set reduction, configurational search, and conformational
search. Details can be found in refs 22 and 47.

(a) Initial data set reduction. ANI HDNNP is trained with a
randomly subsampled ANI-1 data set. The remaining
ANI-1 data are tested, and the small percentage of high-
error structures are added to the training data set.

(b) Configurational search is performed by screening an
external database with an ensemble of previously trained
ANI models. All molecules that fail the QBC test form a
new conformer sampling set (CSS).
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input data (coordinates R, atomic numbers Z, total molecular charge Q) and output (energies E, spin-polarized charges q, EHM diagonal matrix
elements @, and empirical fitting coefficient K). The green blocks indicate NN modules for training and the blue blocks show mathematical

transformations.

(c) Conformational search cycle generates a set of non-
equilibrium conformers for the molecules from new CSS
via one of the three sampling techniques: diverse normal
mode, K random trajectory, and MD. The conformers
which fail subsequent QBC test are labeled and added to
the AL training data set. New ensemble of five ANT NNs is
trained. The conformational search cycles are repeated
until the model stops improving. Then the entire cycle is
restarted.

Transfer Learning

Smith and co-workers” have demonstrated how TL could be
efficiently implemented for the development of HDNNPs with
accuracy comparable to coupled-cluster CCSD(T).** The
resulting ANI-1ccx model afforded a training set consisting of
90% of DFT calculations, while only a fraction of data (~10%) is
required for expensive CCSD(T) calculations. The generalized
workflow is schematically depicted in Figure 3b. First, the ANI
model is trained to the DFT data and provides HDNNP which is
equivalent to ANI-1x. Then, ANI-1ccx HDNNP is retrained to
the CCSD(T)*/CBS data with some optimized NN parameters
remaining constant. NN parameters are organized in a series of
hidden layers. The ANI models trained in this work have four
hidden layers. The two hidden layers are left fixed to avoid
overfitting to the smaller CCSD(T)*/CBS data set. The other
two hidden layers are left to be optimized during the TL
procedure.

TL provides a pragmatic way to lower the computational cost
of obtaining high-level QM data, although yet not used widely in
training HDNNPs. Our case studies with ANI-1ccx potential
show a significant reduction in errors and even outperform DFT
methods in different applications such as isomerization energies,
reaction energies, molecular torsion profiles in nonequilibrium
geometries.2

An alternative to TL is A-learning.”” With the A-learning
technique (Figure 3a), a new ML model is trained to correct the
difference between accurate CCSD(T)/CBS and the existing
ML model taught previously on DFT data. Although A-learning
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and TL allow HDNNPs to reach the same accuracy, A-learning
must evaluate two separate NNPs in order to make a prediction.

4. AIMNET NEURAL NETWORK
POTENTIAL—INCLUDING MORE PHYSICS

So far, we focused our discussion on data-related aspects of
HDNNPs construction. We have discussed how to encode
molecules for training and how to get an optimal data set.
Meanwhile, the success of MLIPs is also attributed to a flexible
functional form of NN for data fitting. Deep learning enables a
model to learn features automatically and recognize patterns,
therefore finding a representation of the data. Obtained patterns
and statistical correlations are entirely data-driven. They do not
necessarily capture the underlying physics and chemistry of
atoms in molecules. This problem is closely associated with the
transferability of MLIPs. Current cutting-edge research in
HDNNPs is focused on capturing the correct physical behavior
by combining physical models with ML or so-called physics-
aware artificial intelligence (PhAI).>°">* The PhAI models
promise to improve generalization by constraining NN to obey
physical laws and reducing the possibility of overfitting and data
memorization.

In the AIMNet®, which takes inspiration from Bader’s
quantum theory of atoms in molecules (QTAIM),” we made
an attempt to improve the HDNNP performance for long-range
interactions. Atoms and bonds in the QTAIM model are
expressed as the function of the electron density, which
describes the average distribution of electron charges in the
nuclei’s attractive field. In AIMNet, atoms and bonds are
expressed by the atomic feature vectors (AFV). The interactions
with the neighboring atoms are transmitted through messages
within the neural network. The main distinction of AFV from
AEV is that instead of assigning fixed AEV to each atom type, in
AIMNet atoms are characterized by learnable AFVs, which
encode similarities between chemical elements. The latter
eliminates the dependence of the AEV size on the number of
element types.

Figure 4 lists all architectures considered in this Account. The
diagram in Figure 4b shows the architecture of the AIMNet
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which consists of several blocks: input data, embedding block,
iterative block, and learned atomic_interaction layer (AIM).
First, the Cartesian coordinates R are submitted to the
embedding block which encodes information about the AFVs
and AEVs. Due to the implementation of JSSFs in the
embedding block, the molecules being encoded in a rotation-
translation invariant way.

To address the presence of different atom types in the
chemical environment, the AIMNet operates with a tensor
product of two coordinate vectors G ® Aj, where G is denoted
by the AEV of the i atom and Ajis denoted by the AFV of the i"
atom. The subsequent summatlon of the outer products of AEV
with AFV restricts the AEV dimension and prevents its growth
with a number of neighboring atom types in AIMNet. For
comparison, the ANI-type HDNNPs use only a concatenation
of the sums of JSSFs [%; G(r) %G ,(,i) 1, where Gy " and G( encode
radial contribution from nelghbormg ] atom and angular
contribution from neighboring jk atom pair to the AEV of the i
atom. AIMNet embedded the same radial and angular JSSFs
complementing them with corresponding AFVs of the atom A;
and the atom pair A({ ). Overall, the AIMNet AEV vector G 1s
defined as follows:

G/ (AIMNet) = G4, G{-AY

()
The AEV vector G,Z further undergoes a nonlinear trans-
formation through the NN block, which produces the
environmental field layer, F.. The influence of the neighboring
atoms on the central i atom through the F; layer is expressed, as
follows:

E= fMLP ([G(r)’ G(a)]) (4)
where the fyp perceptron function extracts information about
the environment of the central i atom. Next, in the interaction
block (Figure 4b), DNN transforms F, layer to the new Atom-In-
Molecule layer (AIM), Mi. Due to the network architecture, the
AIM layer encodes the information used to predict multiple
atomic and molecular properties as well as to update AFV to get
better predictions on the next “SCF-like” iteration. This
information is further decoded with separate DNN blocks.
Finally, we showed that the information encoded in the AFVs
could be used to differentiate chemical elements and a chemical
environment of an atom in a molecule at the same time. We refer
interested readers to the original paper” for a detailed discussion.

Multitask and Multimodal Learning

The type of training data usually limits the applicability domain
of NNPs. At the same time, transferable ML models are
intended to be extensible in the description of the chemical and
conformational diversity of organic molecules. However, due to
the architectural limitations, most HDNNPs, including ANT and
AIMNet, were parametrized only for the neutral molecules or
closed-shell ions. In our subsequent work, we made an attempt
to extend the AIMNet framework toward open-shell molecular
systems. We have included charge-spin dependence to enable
the MLIP to explore a new dimension of transferability. Figure
4c represents the resulting multiembedding AIMNet-ME* model,
which provides a discrete and physically correct behavior of
MLIP with respect to the spin and charge. This architecture
brings ML models one more step closer toward PhAI, where the
ML model correctly describes the energetics of the systems with
long-range dependency in the electronic structure.
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NNP with Charge Equilibration and Spin-Charge

For most NNPs, including ANI-type models which are based on
local short-range descriptors, the accurate prediction of the
system energetics with long-range interactions or ionization
states cannot be performed efficiently. That is because the total
charge and spin multiplicity are highly nonlocal. The local
atomic environment representation does not correctly describe
this phenomenon. Following first-principles QM to incorporate
nonlocal information, the model should adapt according to the
electronic structure changes. Hence, with our AIMNet-ME
potential, we have attempted to include the long-range effects
into the atomic environment representation of the molecule.
That could be achieved with a “message-passing” through the
neural network that redistribute spin-charges. It should be noted
that the AIMNet charge redistribution technique” is an alternative
to the charge equilibration NN technique (CENT).>* AIMNet
builds MLIP through the iterative “SCF-like” updates made to
the AFVs and atomic embeddings. This procedure achieves the
optimal electronic charge distribution over the charge-spin space
of the molecular system. As it has been shown in the original
paper,” the AIMNet potential excellently reproduces three
global CDFT indexes: electronegativity (y), chemical hardness
(17), and electrophilicity (w) with R” ranging from 0.93 to 0.97
and overall achieves “chemical accuracy” for spin-polarized
atomic charges of organic molecules with up to nine atom types.

Figure 4c shows that AIMNet-ME shares the same interaction
and update blocks for neutral and charged molecules, keeping
only their AFVs as different inputs. NN training for neutral and
charged molecules is carried out jointly, and errors for each
charged state are averaged in the loss function. That enables
AIMNet-ME to learn different atomic representations inside
one model according to their iterative charge redistribution
through the NN blocks. The AIMNet family of methods could
thus serve as a neural charge redistribution scheme. Flexible
integration of QM data and adaptable electronic description
within AIMNet is a step toward developing a general-purpose
single NN architecture capable of quantitatively predicting
nonlocal molecular properties.

5. INTERFACING PHYSICS AND DEEP NEURAL

NETWORKS

With training HDNNPs to approximate results of QM
calculations, one can predict properties and energies within
milliseconds. Although advanced HDNNPs are nonparametric
IPs and can be systematically improved with complex AEV
descriptors, they still are not tied to the physical form and
symmetries in the Schrodinger equation. This HDNNP
deficiency causes uncertainties and issues with extrapolation.
Here, we discuss our efforts to combine HDNNP with an
effective Hamiltonian model. With the latter, we expect to
maintain the accuracy of HDNNP along with the interpretability
of the Hamiltonian model and low cost of the semiempirical QM
approach. In addition, mapping the original QM problem to
simple Hamiltonian mechanics provides a practical method to
address the locality challenge of molecular representation for
HDNNPs. As it was repeatedly highlighted above, the energy of
the system in ML models is constructed as a sum of atomic
energy contributions, which in turn depend on the local
chemical environment up to an empirically determined cutoff
radius. Meanwhile, the total energy of the molecular system
could be simply expressed in terms of Hamiltonian mechanics
with physics-based interpretation.
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Figure S. Right: MO energy for the rotation around a central bond in (a) butadiene and (b) aza-butadiene. Left: frontier MO diagrams.

Machine Learned Hiickel Hamiltonian

Today, Hiickel-like methods cannot be described as main-
stream, but they are used as part of the tight-binding algorithms.
The Hiickel model is still appreciated for its simplicity and
interpretability. Our recent work® has introduced ML semi-
empirical time-binding scheme based on the extended Hiickel
method (ML-EHM, Figure 4(d)). In the Hiickel theory, the
definition of Hamiltonian H for the molecular system in a basis
set of N atomic functions is given as follows:

a11
1
oK (a11 + a22)S12

1
7K * (any + a11)Sn1
1

3K * (any + a22)Snz

1
7K * (@22 + a11)S21

az

(5)

1 ) 1 : :
K ¥ (a1 + ann)Sin - 3K ¥ (a2 + an)San anN

The atomic functions are chosen to include Is orbitals of the
hydrogen atoms and 2, 2p,, 2p,, and 2p, orbitals of the carbons
and heteroatoms in the molecule. The matrix equation for all the
molecular orbitals in the extended Hiickel method is given as
eigenvalue problem:

HC = ESC (6)

The square matrix H is defined in (eq 5), and C is the matrix of
coefficients for the atomic orbitals. S is the matrix of overlap
integrals, and E is the diagonal matrix of orbital energies. In ML-
EHM, the elements of the H matrix (eq 5) are assigned using
learnable parameters oty and K* which makes the method a ML
molecular orbital method. The eq 6 is iteratively solved until the
eigenvalues match the orbital energies of a high-level QM
method.

The choice of parameters is deliberate since the Coulomb
integral ayy is a function of the nuclear charge and the type of
orbital, thus it encodes the information about the local chemical
composition given by the types of chemical species. The
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Hoffmann vector K* scales the contributions of the energy of
the atomic orbitals and their overlapping to the molecular
energy. Thus, vector K is bond-dependent®® and therefore
introduces the i atom in the molecule in terms of its local
structure. As the atomic chemical composition and the atomic
structure depend upon the entire chemical environment, e.g,
bond order, conjugation, and hybridization, it is reasonable to
approximate those unknown complex functions with NN.

Figure 4d shows that ML-EHM generates the set of
parameters {K, a}, accounting for the AEV of each atom and
atom pairs, to create an effective extended Hiickel Hamiltonian.
ML-EHM is based on the HIP-NN*® which was trained to
predict the H matrix elements based on DFT. It is important to
emphasize that, in contrast to the original EHM formulation,
ML parameters {K, a} are continuously varying with molecular
geometry allowing to capture the orbital physics observed in
molecule. By learning the orbital behavior with MLIP we could
fastly estimate the molecular structure, the energy barriers to
rotation around a bond or predict the transition states for
reactions.

ML-EHM Case Study for Internal Rotation

As a practical application of ML-EHM model, we demonstrate a
behavior of the frontier molecular orbitals upon rotation around
a central bond in butadiene and aza-butadiene. These two
molecules have the same number of electrons, while aza-
butadiene has one s-orbital less. As it can be seen from Figure 5
HOMO and HOMO - 1 in butadiene shift down and become
HOMO — 1 and HOMO - 2 in aza-butadiene. Moreover, the
orbital crossing is perfectly reflected in Figure 5 as butadiene
undergoes a torsional rotation. According to the orbital
symmetries:

https://dx.doi.org/10.1021/acs.accounts.0c00868
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cis-butadiene  X'A;: (6b,)(7a,)(1b,)(1a,)

trans-butadiene XlAg: (6b,)(7a,)(1a,)(1b,)

we expect the crossing between HOMO and HOMO - 1. The
aza-butadiene molecule lacks inversion symmetry due to the
presence of nitrogen. In aza-butadiene, due to the valence orbital
shift, HOMO — 1 and HOMO — 2 are predicted to cross. This is
in clear contrast with the original EHM, which uses fixed
empirical parameters and is thus unable to predict smooth
orbital energies change with bond rotations and bond stretching.
This example illustrates how ML-EHM harmonizes to capture
orbital physics across substantial geometry changes. With the
matrix diagonalization, the EHM captures rapid changes in
orbital physics, and the learnable diagonal elements provide
smooth modulation of the underlying Hamiltonian. In this way,
the ML-EHM model learns the underlying physics to reproduce
the quantum effects caused by the electronic interactions in the
molecular system.

6. OUTLOOK

In this Account, we have presented a perspective on the recent
development of machine-learned atomistic potentials and their
combination with physics-based approaches. With the rapid
improvement of MLIPs, they are promising to change the way
molecular simulations are conducted. Modern MLIPs can carry
out high-throughput calculations for molecules and materials in
millisecond time scales with accuracy approaching high-level
QM. They are actively used to find reliable conformational
energies for molecules, reparametrize force fields, and simulate
protein—ligand interfaces. Recent results also show that the
coupling of ML and MM models drastically improves the
accuracy of protein—ligand free energy simulations.”’

Unfortunately, the field of MLIPs is heavily dominated by the
benchmark culture. New models are developed with the sole
purpose of beating the current state of the art on standard
benchmark data sets and improve accuracy for yet another 0.1%.
The community should move toward solving real-life
applications, addressing the challenges of scale and time, and
aiming to reproduce experimental observables.

Given the prospects of artificial intelligence (AI), robotics,
and intelligent software, we are currently witnessing a trans-
formation of chemical sciences with data-driven automated
discovery methods. As we show in this Account, the current
MLIPs research is focused on physics-aware artificial intelligence
(PhAI), where ML is combined with physical models. The
envisioned PhAI of the future will imitate human decision-
making by machine intelligence. It will incorporate data-driven
and physics-based methods into one ultimate model. If
successful, PhAI will revolutionize the way computational
methods are developed. In PhAI, multiple simple components
are combined into a single system. Consequently, their
individual limitations diminish, but new challenges might arise.
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