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ABSTRACT: In silico identification of potent protein inhibitors commonly
requires prediction of a ligand binding free energy (BFE). Thermodynamics
integration (TI) based on molecular dynamics (MD) simulations is a BFE
calculation method capable of acquiring accurate BFE, but it is computa-
tionally expensive and time-consuming. In this work, we have developed an
efficient automated workflow for identifying compounds with the lowest BFE
among thousands of congeneric ligands, which requires only hundreds of TI
calculations. Automated machine learning (AutoML) orchestrated by active
learning (AL) in an AL−AutoML workflow allows unbiased and efficient
search for a small set of best-performing molecules. We have applied this
workflow to select inhibitors of the SARS-CoV-2 papain-like protease and
were able to find 133 compounds with improved binding affinity, including 16 compounds with better than 100-fold binding affinity
improvement. We obtained a hit rate that outperforms that expected of traditional expert medicinal chemist-guided campaigns.
Thus, we demonstrate that the combination of AL and AutoML with free energy simulations provides at least 20× speedup relative
to the naiv̈e brute force approaches.

■ INTRODUCTION
Hit-to-lead and lead optimization stages of drug design aim to
discover lead compounds, molecules with improved binding
affinity to a biological target, by altering the chemical structure
of a hit molecule that has a demonstrated activity against the
target. The typical lead optimization process is composed of
first chemically synthesizing multiple compounds and then
testing them for biological activity. This is known to be
expensive and time-consuming.1,2 Structure-based virtual
screening of ultra-large molecular libraries, which aims to
minimize the number of compounds chosen for laboratory
synthesis and testing, has become a successful strategy in
computational drug design.3 While high hit rates have been
achieved with docking ligands to target proteins, two main
limitations of such approaches remain: the limited ability of
docking methodologies to predict ligand binding affinity and
the technological difficulty of working with libraries composed
of billions of compounds.4,5

Unlike docking approaches, all-atom molecular dynamics
(MD) simulation methods�including thermodynamics inte-
gration (TI)6�can predict ligand binding affinity, also termed
binding free energy (BFE), with high accuracy.7 A relative BFE
(RBFE), i.e., a BFE difference between a new ligand and a lead
compound, is needed in hit-to-lead and lead optimization
campaigns.8−13 However, despite recent advances in high-
performance computing and the improvement of algorithms
for graphical processing unit (GPU)-accelerated MD simu-
lations, computing multiple RBFEs for a large number of

compounds remains prohibitively time-consuming and techni-
cally intractable.14

To overcome this problem, we have developed an
automated approach for a machine learning (ML)-active
learning (AL) guided lead optimization process based on
RBFEs computed with TI. In this approach, compounds for
the TI calculations are selected with an automated ML
algorithm designed to achieve two goals: (1) to efficiently
enrich a set of molecules selected for TI computation with
good binders and (2) to improve an ML model’s prediction of
the RBFEs for an entire screening library of molecules using
the TI computed RBFEs. To achieve this two-fold goal, we
coupled the TI RBFE calculations with an automatic machine
learning (AutoML) cycle, thus eliminating a model selection
bias and efficiently utilizing an information gain on each AL
iteration. This AutoML−TI RBFE computational workflow
allows for the identification of tight-binding ligands with a
minimal number of TI RBFE calculations.

The coronavirus disease 2019 (COVID-19) pandemic
caused by a severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) remains a serious threat to global public health.
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Given that the number of unvaccinated people is still
significant, as well as the rapid rate of virus mutations, efficient
COVID-19 therapeutics are needed. One of the most attractive
drug targets for designing COVID-19 antivirals is the SARS-
CoV-2 papain-like protease (PLpro), an enzyme responsible
for processing the viral polyprotein and suppressing the host
immune function.15 PLpro has 315 residues and consists of
two distinct domains: a small N-terminal ubiquitin-like domain
and a “thumb−palm−fingers” catalytic domain (see Figure 1).

The fingers subdomain includes a zinc-binding site formed by
four cysteine residues. The protein active site is formed by a
canonical cysteine protease catalytic triad which includes
Cys111, His271, and Asp286 residues located at an interface
between the thumb and the palm subdomains.

Several N-[(1R)-1-naphthalen-1-ylethyl]benzamide deriva-
tives were demonstrated to be effective at halting SARS-CoV-2
PLpro activity as well as SARS-CoV-2 replication in cells.16,17

In particular, the most potent inhibitor, GRL0617, demon-
strated a half-maximal inhibitory concentration (IC50) of 2.3
μM,16 and a high-resolution structure was obtained (Figure 1).
In a more recent study, this inhibitor demonstrated an IC50 of
1.61 μM and a dissociation constant of 2.70 μM.17 High-
resolution structures of SARS-CoV-2 PLpro complexes with
three inhibitors with the same scaffold, including the inhibitor
GRL0617, were resolved with the resolution of 2.1−2.9 Å,
revealing identical binding modes.16 This indicates that this
scaffold is important for ligand binding to PLpro and suggests
that more potent PLpro inhibitors may be found among
compounds with this scaffold. Recently, several novel PLpro
inhibitors based on the similar scaffold were proposed with
limited success using expert-driven lead optimization ap-
proaches.17 In this work, we virtually screened a library of 1.3
billion commercially available compounds, selected a focused
library of 10,000 derivatives of N-[(1R)-1-arylethyl]-
arenecarboxamide, and finally identified 16 potent binders
with more than 100-fold improvement in predicted binding
affinity.

■ METHODS
Database Screening and Molecular Preparation.

Dataset. Catalogs of three chemical vendors, WuXi [68.98
M], Mcule [2.65 M], and Enamine [1211.72 M], were
combined into a single dataset, totaling approximately 1.3
billion purchasable molecules. The processing of the focused
library was organized into 6 steps (Figure 2): (1) virtual
screening of molecules based on the SMARTS pattern (see

Figure 2A) with a Bemis−Murcko scaffold18 of a reference
ligand modified to allow substitutions of carbons to nitrogens.
(2) Enumerating protonation, tautomeric, and stereoisomeric
states using the OpenEye QUACPAC and OEFlipper toolkit,19

allowing up to 8 chiral centers: only neutral molecules were
retained for further calculations. (3) Filtering using SMARTS
pattern (see Figure 2B): only molecules with the same
configuration of the chiral center as the reference ligand (R-
stereoisomer) were retained. (4) Generating 3D conformers
for each of the remaining 9998 molecules using the OpenEye
Omega toolkit.20 (5) Molecular docking of generated con-
formers and pose filtering (see the next section for details).

Molecular Docking. The representative structure of PLpro
in complex with the reference ligand obtained by MD
simulations (see details in the Molecular Dynamics Simu-
lations Section) was prepared for template docking using the
OpenEye Make Receptor program (version 4.0.0.0).21 A
rectangular box with edge lengths 17 × 25 × 18 Å centered
on the reference ligand was specified. The outer contour of
3300 Å3 was set and the inner contour was disabled. Three
water molecules located in the binding site between the ligand
and protein residues were retained, and all other water
molecules were removed. The reference ligand was set as a
template and no constraints were added. 3D conformers were
generated from SMILES using OpenEye OMEGA (version
4.1.0.0).20 A maximum number of conformers for a single
molecule of 2000 and a minimum root mean square deviation
(RMSD) of 0.2 Å were used. Template docking was performed
using OpenEye HYBRID (version 4.0.0.0).22 For each
molecule, the 100 best poses were stored in the output data.
All other parameters were set by default.

Pairwise atom mappings and alignment (1-to-1 atom
correspondence) between a reference ligand and test ligand
poses after docking, needed for initiation of MD simulations,
were prepared using LS-align.23 A molecular pose was chosen
for an MD simulation if it had the lowest Hybrid Docking
score and satisfied the following criteria (see Figure S1): (1)
RMSDcore ≤ 1.3 Å (an RMSDcore is an RMSD between atoms
of the SMARTS pattern of a test molecule and a reference
ligand); (2) the length of alignment was 20 or more heavy
atoms, and (3) CG3 Clash ≤0.5, where CG3 Clash is the

Figure 1. Structure of SARS-CoV-2 PLpro and its inhibitor. (A)
Structure of SARS-CoV-2 PLpro in complex with GRL0617 (PDB
ID: 7JIR). The inhibitor and residues of the catalytic triad are shown
as pink and green sticks correspondingly. (B) GRL0617, with the
common scaffold (N-[(1R)-1-arylethyl]arenecarboxamide) high-
lighted in green.

Figure 2. SMARTS filters used for small molecule dataset mining. (A)
Visualization of a step 1 SMARTS pattern, used for the non-
stereospecific search of N-[(1R)-1-arylethyl]arenecarboxamide de-
rivatives. (B) Visualization of a step 3 SMARTS pattern, used for the
stereospecific search of N-[(1R)-1-arylethyl]arenecarboxamide de-
rivatives. Aromatic atoms are represented as dashed circles and
aliphatic atoms as solid circles. Dark gray color represents carbon
atoms, red color represents oxygen atoms, blue color represents
nitrogen atoms, and light gray color represents any atom.
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penalty term of the Chemgauss3 scoring function, which
accounts for clashes between ligand and heavy protein atoms.22

This led to a focused library of 8175 molecules.
Molecular Dynamics Simulations. Protein System

Preparation and Simulation. The crystal structure of PLpro
in complex with the reference ligand was extracted from the
Protein Data Bank (PDB ID: 7JIR).24 The protein, ligand, and
zinc ion bound to protein and water molecules in the binding
site of the ligand were retained, and all other molecules present
in the crystal structure were removed. The input coordinates,
topology, and parameters for conventional MD simulations
were obtained using Ambertools 18.25 The protein, zinc ion,
and water were parameterized using FF14SB,26 ZAFF,27 and
TIP3P28 models, respectively. Ligand atom parameters were
obtained using GAFF (version 2.11),29 and ligand atomic
charges were derived using the AM1-BCC method.30 GPU-
accelerated MD simulations were performed using the
pmemd.cuda module of AMBER 18.25 The simulation
protocol included the following steps: (1) 2000 steps of
minimization with the steepest descent method; (2) 100 ps of
heating from 1 to 298 K in the NVT ensemble; (3) 300 ps of
density equilibration in the NPT ensemble; (4) 50 ns of
production simulation in NVT. Harmonic RMSD restraints
were imposed on heavy atoms of the protein, ligand, and three
water molecules located in the binding site during
minimization and heating and were gradually removed during
density equilibration. No restraints were used during
production simulations.

Alchemical Relative Binding Free Energy Calculations. In
this work, we computed RBFE for selected ligands with respect
to the reference ligand using the alchemical thermodynamic
cycle (Figure 3) reported elsewhere.31 The RBFE is defined as
a difference of the standard binding free energies (see eqs S2
and S3) of a target ligand B and a reference ligand A:

=G G G ,A B B A (1)

In practice, the RBFE is calculated as a difference of free
energies of transforming a reference ligand into a target ligand
in protein ΔGA → B

prot and in solvent (water) ΔGA → B
wat :

=G G G ,A B A B A B
prot wat (2)

In this work, the free energies ΔGA → B
prot and ΔGA → B

wat were
calculated by TI (see eq S5) using GPU-accelerated TI
implementation of AMBER 18.25 The PLpro inhibitor
GRL0617 (see Figure 1) was used as a reference ligand for
all TI calculations.

Ligand Preparation and Parameterization. The FESetup
tool (version 1.2.1)32 was used to set up the systems for all TI
simulations. The input data for the setup procedure were
ligand poses obtained by docking, the representative structure
of PLpro in complex with the reference ligand obtained by
MD, and the atom mappings generated by LS-align.23 The
output data were AMBER input coordinates and topologies for
the solvated ligand system and the protein−ligand complex
system. All atom parameters were obtained using the same
force fields and charge derivation method as described in the
previous section.

The first step of the setup procedure was ligand parameter-
ization, for which the docked pose was used for the target
ligand and the reference ligand was extracted from the
representative structure. The target ligand was then aligned
to the reference ligand using LS-align atom mappings, which
outputted the pair of ligands in a vacuum. For the preparation
of the solvated ligand systems, the pair of ligands was solvated
in a rectangular water box with a minimum distance between
the edges of the box and the ligand of 12 Å. For the
preparation of the protein−ligand complex system, the pair of
ligands was placed in the protein binding site of the
representative structure using the coordinates of the reference
ligand. Since the Cartesian coordinates of the reference ligand
do not change during extraction from the representative
structure, inserting the pair of ligands into the representative
structure provided the same binding mode as the representa-
tive structure had initially. The obtained AMBER input
coordinates and topologies were visually checked using
PyMOL (version 1.8.4.0).33

TI Simulations. For both solvated ligand and protein−ligand
complex systems, TI simulations were performed at 9 lambdas
of a Gaussian quadrature (0.01592, 0.08198, 0.19331, 0.33787,
0.5, 0.66213, 0.80669, 0.91802, 0.98408). For each lambda, the
system was minimized and then equilibrated using the same
protocol as described in the previous section. A 4.5 ns
production simulation in the NVT ensemble was then
performed. The unique atoms of the target ligand and the
reference ligand were modeled using soft-core potentials for
both electrostatic and Van der Waals interactions. The long-
range interaction cut-off, temperature, and pressure settings
were the same as described in the previous section.

The orientation of ligands with respect to the protein was
restrained using the virtual bond approach34 in all TI
simulations for protein−ligand complex systems. The carbon
atoms of the naphthalene ring of the reference ligand and the
Cα atoms of the Palm subdomain residues were used to set
restraining potentials. Force constants of 5 kcal/(mol Å2) and
5 kcal/(mol rad2) were used for distance and angle restraints,
respectively.

Average gradients were calculated from the last 4 ns of the
production simulations using the alchemlyb python library.35

The free energies for both mutations in water and in complex
with the protein were obtained by the Gaussian quadrature
rule. RBFE final values were obtained according to eq 2. Errors
in RBFEs were estimated using the bootstrap method13

Figure 3. Thermodynamic cycle for alchemical RBFE calculations.
The common substructure of ligands is shown by a gray hexagon, and
the unique atoms are shown by red and yellow circles. The protein is
shown by green. ΔGA and ΔGB correspond to standard binding free
energies for the ligands A and B. ΔGA → B

wat and ΔGA → B
prot corresponds

to the free energy of mutating ligand A to B in water and protein.
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implemented in the alchemlyb python library.35 For each
lambda window, the standard error in Vd

d
(see SI methods)

was obtained by bootstrapping and then the standard error in
ΔΔG was obtained according to the quadrature formula:

= w ,G
i

i V
2

d
d

2
i (3)

where λi is a lambda window and wi is the weight for this
window according to the Gaussian quadrature.

Converting RBFE to ΔpKd. For a reference ligand A and a
target ligand B, ΔpKd is defined as

=K pK pKp ,d d B d A, , (4)

where pKd, A and pKd, B are negative decimal logarithms of
dissociation constants for the reference and the target ligands,
respectively. The RBFEs ΔΔG were converted to ΔpKd using
the following equation:

=K G
RT

p 0.434d (5)

where R is the gas constant, T is the temperature (298.15 K),
and the coefficient of 0.434 comes from converting a natural
logarithm to a decimal logarithm.

Benchmarking TI Protocol. MD input preparation and TI
simulations for the benchmark set of ligands were performed
following the procedures described above. Experimental
absolute binding free energies (ABFE) ΔGexp were obtained

from the dissociation constants Kd reported in Shen et al.17

according to the following equation:

=G RT
K
C

ln ,d
exp 0 (6)

where C0 is the standard concentration (1 mol/L). For each
ligand, the experimental RBFE was obtained according to the
following equation:

=G G G ,exp exp exp
ref

(7)

where ΔGexp
ref is the experimental ABFE of the reference ligand

(−7.60 kcal/mol). RBFEs ΔΔGTI, computed by TI, were
transformed to the ABFE ΔGTI according to the following
equation:

= +G G G .TI TI exp
ref

(8)

Machine Learning Model Development and Feature
Engineering. Feature Engineering and Molecular Repre-
sentation. For the focused library of 8175 molecules (and
corresponding poses), five different molecular representations
were constructed: RDKit fingerprints (path fingerprints with
path length 7 and binary vector length 2048) using RDKit,
Morgan fingerprints (Extended-Connectivity Fingerprints with
radius 3 and binary vector length 2048) using RDKit, 3D
molecular fingerprints E3FP with default parameters,36

protein−ligand extended connectivity (PLEC) fingerprints
with default parameters,37 and a combination of E3FP and
PLEC fingerprints constructed as a concatenation of binary

Figure 4. General scheme of the automated computational workflow organized in an active learning cycle. The workflow includes two main
modules: AutoML and TI RBFE and four principal steps. Molecules with computed ΔΔG are depicted as colored hexagons in step 1. The labeled
chemical space is shown as 2D t-SNE plots. All colors are consistent with the color scheme in Figure 7 according to their ΔΔG values in (blue,
white, red).
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vectors. For the 5 molecular representations above, three
different dimensionality reduction methods (PCA, MDS,
TSNE) with four reduced target dimension sizes (2, 10, 100,
200) were used. Thus, in total, 42 molecular representations
were constructed (see Table S1).

AutoML. With the set of 42 possible molecular representa-
tions as an input (treated as hyperparameter), we designed the
automated machine learning (AutoML) workflow based on the
following classes of ML algorithms (Scikit-learn38 implemen-
tation): Random Forest (RF), Multi-Layer Perceptron (MLP),
Linear Regression (LR), KNeighbors Regression (KNR),
SupportVector Regression (SVR), Gaussian Process Regres-
sion (GPR), and GaussianProcess Regression with Tanimoto
Kernel (GPT). The model selection and hyperparameter
search were done from scratch on each active learning cycle
(see the Active Learning section) and were organized based on
nested 5-fold cross-validation with mean absolute error (MAE)
as the model selection criteria.

Active Learning. The active learning process was organized
iteratively and consisted of eight active learning cycles (see
Table S2). AL was initialized on active learning cycle 0 (AL
Cycle 0) using a diverse batch of 45 representative molecules
from the focused library selected by Butina-Taylor diverse
clustering39 (spherical exclusion clustering) with RDKit
fingerprints (path fingerprints with path length 7 and binary
vector length 2048) as a molecular representation.

AL cycles 1−5 utilized a balanced selection of molecules (for
details, see Table S2, “Selection parameters”). The goal at this
stage was to balance the ML model between the information
gain about the chemical space and the need for selecting
molecules with improved potency. In other words, those cycles
were used to diversify the set of molecules in order to
iteratively improve model generalizability yet keep a preference
for molecules with expected negative ΔΔG. We employed
clustering to achieve this goal. The top 200 molecules with the
most negative predicted ΔΔG were selected and then clustered
into 30 clusters. From every cluster, a representative molecule
with the lowest predicted ΔΔG was selected for RBFE
calculations.

■ RESULTS AND DISCUSSION
Approach. The workflow developed in this work uses as a

source of training data for the ML models computationally
intensive MD-based thermodynamic integration calculations of
the RBFEs (ΔΔG) of a focused library of molecules with a
target protein SARS-CoV-2 PLpro. To develop a focused
library of compounds, we initially screened 1.3 billion
commercially available molecules from three reputable
compound vendors: Enamine, WuXi, and Mcule. The resulting
library of approximately 10,000 N-[(1R)-1-arylethyl]-
arenecarboxamide derivatives was further narrowed down to
8175 compounds, which passed structural molecular docking
quality controls. These compounds were used to prepare
bound poses by docking each molecule to the target binding
site (see Methods, Molecular Docking subsection).

To find the best PLpro binders, we utilized active learning
(AL) approach. The AL was organized as an iterative cycle
(see Figure 4): (i) starting with a seed set of molecules, we
performed TI RBFE calculations to train the initial ML model,
(ii) we then selected molecules for the next round of the TI
RBFE calculations using the current ML model, and (iii) we
computed additional TI RBFEs for the molecules selected in

(ii) and re-trained the ML model with an updated TI RBFE
dataset. The cycle was repeated until convergence.

Active Learning (AL) Cycle. The main goal of active
learning is to infer an accurate ML model from a set of training
data smaller than a randomly selected data set needed to
achieve the same model accuracy.40 Here, the AL workflow
was organized as a black box optimization of ΔΔG obtained by
the TI RBFE calculations for a subset of molecules from a
focused library of molecules. The AL cycles were performed in
two regimes: explorative and exploitative. These were
distinguished by the data selection style: the explorative
regime used a balanced selection, while the exploitative regime
used a greedy selection (see Methods, Active Learning
subsection). The explorative regime was used until the ML
model reached 1 kcal/mol convergence in retrospective
absolute error for two consecutive AL cycles (see Figure 5)
followed by the exploitative regime used to select molecules
with the lowest ΔΔG. Both explorative and exploitative
regimes were organized in an AL cycle of four steps (Figure 4):
(1) train a proxy AutoML-model on acquired labeled data for a
given objective(s); (2) use this model to screen the chemical
space, (3) select the optimal set of candidate molecules for the
TI RBFE calculations, (4) perform the TI RBFE calculations
for selected molecules and use these obtained ΔΔG data to
update the AutoML-model. The AL cycle includes two major
computational modules (Figure 4): first, an AutoML module
responsible for ML model development based on the labeled
data provided by the second computational module, a TI
RBFE module responsible for the TI computation of relative
binding free energies of selected compounds in complex with
the PLpro protein. The AL cycle shown in Figure 4 is
initialized with a small but diverse set of molecules. Their
ΔΔG values are computed with the TI RBFE module in step 1.
These ΔΔGs are added to the pool of labeled data, which are
used by an AutoML module to train a predictive model.
Specifically, labeled data are input−output pairs (X,y), where
the output label y represents a correct answer to a question
associated with an input X. In this work, X describes a ligand
molecule, and y is a ΔΔG value obtained in a TI RBFE
calculation (see Methods for details). An ML model trained in
step 2 is used in step 3 to virtually screen the chemical space

Figure 5. TI RBFE results in AL cycles (top); MAE for am ML model
measured as 10-fold CV (middle); retrospective AE (bottom).
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(gray dots represents the chemical space) to obtain ML-model
predicted ΔΔG values (color-coded here as in Figure 4). A
new set of molecules is selected in step 4 to be submitted for
the TI RBFE calculations, thus completing the cycle. The
selection criteria used in step 4 are adjusted according to the
specific goals: balanced for AL cycles in the explorative phase
or greedy for the exploitative phase (see the Methods section
for details).

Automated Machine Learning (AutoML) Module. Building
an ML model with an a priori chosen ML method (e.g., a
neural network, a Random Forest, or a Gaussian process) and a
molecular representation (e.g., a path fingerprint, or a ligand−
protein interaction fingerprint) may lead to a substantial model
and sample selection bias. Multiple studies have shown that
this bias may result in substantial modeling artifacts.41−45 In
contrast, an AutoML aims to make decisions for ML model
selection, data representation, and hyperparameters in a data-
driven, objective, and automated way.46−49 The combination
of AutoML and AL approaches (AutoML-AL) allows for a fast,
systematic, and unbiased exploration of the chemical space in
the first regime and the selection of champion candidate
molecules in the second, exploitative, regime. We implemented
AutoML as a set of well-performing ML algorithms available in
the scikit-learn package,38,50 multiple molecular features,
feature engineering (finding optimal molecular representa-
tions), and on-the-fly selection of the best combination of an
ML algorithm and molecular representation. (see Methods,
Feature Engineering and Molecular Representation subsection
for details).

MD-Based Thermodynamic Integration for RBFE (TI
RBFE). The automated protocol for the multiple RBFE
calculations implemented in this work requires minimal user
interaction. Our protocol accepts a set of docked ligands (see
the Methods section for details) as an input and provides
calculated RBFEs for all ligands as an output. Compound
GRL0617 (Figure 1B) was used as a common reference ligand.
An automatic TI workflow was designed in three connected
parts: (1) generation of the MD input files (including
molecular topologies, initial coordinates of the atoms, and
restraints), (2) set up and submission of the parallelized GPU-
accelerated MD simulations using the TI implementation of
the AMBER 18 package,25 and (3) collection and processing of
the output data. The details of the protocol are described in
the Methods section.

Results. An AutoML−AL approach (Figure 4) was utilized
to perform eight AL cycles. Figure 5 shows all TI-obtained
ΔΔGs over all AL cycles. AL cycle 0 was initialized with a
diverse selection of molecules to sample the chemical space of
the focused library as broadly as possible (see Methods for
details). TI RBFEs were computed for this initial set of
molecules and supplied to the AutoML module for initial ML-
model training. For the next five AL cycles (AL cycles 1−5),
we used a balanced selection of molecules from the full focused
library (see Methods, Active Learning subsection for details).
The goal of these five AL cycles was to gain information about
the chemical space of the focused library rather than to select
molecules with the lowest ΔΔGs.

With the progression of AL cycles, the performance of the
ML model improved. The cross-validated mean absolute error
(MAE; see Figure 5, middle) reached 1 kcal/mol, which is
comparable to the accuracy of the RBFE calculations reported
elsewhere.8−11 To verify model convergence, we performed the
sixth AL cycle with a random selection of molecules (see
Methods). The random selection of molecules also served to
overcome the possible problem of AL being trapped in a local
minimum of the chemical space.

We monitored two criteria between two subsequent cycles
(AL cycles 1−6). The first criterion, the difference between the
mean ΔΔGs and the second is retrospective absolute error
(AE). The difference between the mean ΔΔGs is staying up to
ca. 2 kcal/mol. The retrospective AE remains nearly constant
(Figure 5, bottom) between the last balanced cycle (AL cycle
5) and the random cycle (AL cycle 6). This suggests that the
AutoML−AL process converged to a desired chemical
accuracy for the entire focused library. Subsequently, for the
AL cycle 7, we performed an exploitative (greedy) selection of
the molecules with the lowest ML predicted ΔΔGs. The
resulting AL cycle 7 had a mean TI ΔΔG of −1.7 kcal/mol as
opposed to 2 kcal/mol in AL cycle 6 (Figure 5, top). This
difference is statistically significant with the p-value = 1.3 ×
10−8 according to the Mann−Whitney U test.51

The efficiency of the AL workflow can be further
demonstrated by comparing the distributions of predicted
binding affinity of the ligands selected by the ML models
(including both the explorative and the exploitative sets) to
those of the ligands selected by diversity or randomly (see
Figure 6). For convenience, all ligand ΔΔGs were converted to
ΔpKd (see Methods for details). Please note that ΔpKd = 1 and

Figure 6. Normalized histograms representing the distribution of ΔpKd for ligands selected for RBFE calculations. (A) Distribution of ΔpKd for
ligands belonged to AL explorative selection (red) and random selection (orange). (B) Distribution of ΔpKd for ligands belonged to AL explorative
and exploitative selections (blue) and diversity or random selection (gray). Definition of ΔpKd is presented in the text. Numbers of ligands with
ΔpKd lying within the corresponding intervals are shown above bars.
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Figure 7. TI RBFE results and ML model evolution over the active learning cycles. Each panel (labeled by the AL cycle number and a
corresponding selection style) shows two 2D-labeled t-SNE representations of the focused library: (top) molecules selected in a respective AL cycle
for the TI RBFE calculation are colored by the TI computed ΔΔG, and the rest is shown in gray; (bottom) focused library is colored by ML
predicted ΔΔG. The color bar for the ΔΔG values is shown at the bottom.

Figure 8. Ligands with improved binding affinity. (A) Common scaffolds of ligands with negative ΔΔG. “Ar” corresponds to any substituted
aromatic system containing a six-membered aromatic ring. Chemical modifications with respect to the scaffold of reference ligand are circled. (B)
Reference ligand analogs corresponding to the common scaffolds shown in section A. (C) Ligands with the highest predicted binding affinity.
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ΔpKd = 2 correspond to a 10-fold and 100-fold improvement
in the binding affinity (Kd of 270 and 27 nM, respectively).
Most ligands selected by the AL workflow (∼ 70%) were
found to have a stronger binding affinity (ΔpKd > 0). In
particular, around 90% of the ligands selected by the AL at the
exploitative phase have a stronger binding affinity than the
reference ligand (Figure 6A). In contrast, most ligands selected
randomly or by diversity (∼89%) were found to have a weaker
binding affinity than the reference ligand (ΔpKd < 0; Figure
6B). Remarkably, ∼9% of ligands selected by the AL had ΔpKd
> 2 while only one such ligand was found with random
sampling. Overall, the distribution of predicted ΔpKd for
ligands selected by AL is substantially shifted toward higher
binding affinity. Thus, these data show that employing AL
results in a significant increase in the efficiency of the
alchemical calculations for virtual screening.

In the exploitative cycle 7, 27 out of 30 ligands were found
to have improved binding affinity with respect to the reference

ligand. In contrast, in the random sample, the distribution was
the inverse, with only 3 out of 30 ligands having an improved
binding affinity.

TI RBFE calculations were performed for 253 ligands.
Negative RBFEs were computed for 133 ligands, i.e.,
approximately 53% of TI calculations. Thus, more than half
of the ligands screened by the TI calculations were predicted to
have higher binding affinity than the reference ligand. Among
these, 62 ligands, or 24.5% of the ligands screened by the TI,
were found to have more than a ten-fold improvement in
predicted binding affinity. Given that the dissociation constant
for the reference ligand was 2.7 μM,17 dissociation constants
for these ligands were predicted to be smaller than 270 nM. 16
ligands, or 6% of the ligands screened by TI, were found to
have more than a hundred-fold improvement in predicted
binding affinity to the target protein, which corresponds to
dissociation constants below 27 nM.

Among ML-selected molecules (in the explorative and
exploitative cycles), approximately 70% were estimated by TI
to have higher binding affinity than the reference ligand. In
contrast, the ratio of such ligands for the diverse and random
samples was only about 10%. Notably, our results demon-
strated a significant advantage of the Auto-ML guided
sampling over the random and diverse sampling in identifying
ligands with more than ten-fold improvement in predicted
binding affinity. In the ML samples, approximately 25% and
approximately 8% of ligands had 10−100 and greater than 100-
fold improvement in binding affinity, respectively, while in
random and diversity samples, both ratios were approximately
1%.

Figure 7 shows the evolution of the ML model’s perception
of the focused library chemical space, as well as the distribution
of the molecules chosen for the TI RBFE calculations. In
Figure 7, the focused library chemical space is depicted as a
two-dimensional t-SNE projection, which estimates an
organization of the high-dimensional representation of the
molecular chemical space and constructs a low-dimensional
representation that preserves relationships present in the high-
dimensional representation.52

Notably, at the beginning of the active learning workflow
(AL cycle 0), the ML model does not distinguish (Figure 7)
specific regions of the chemical space enriched with favorable
binders characterized by low ΔΔG. In the following AL cycles
1−5, with the balanced selection employed, the model was
exploring multiple regions and found the perspective chemical
space (Figure 7, AL 1−5, TI row). As a result of information
gain, the ML model’s perception was changing significantly
(Figure 7, AL 0, ML row). Regions of chemical space that are
densely populated with low ΔΔG molecules started to be
identified (see Figure7, AL 1, ML row). By AL cycle 5, the ML
model is converged (Figure 5), which is indicated by the
stabilized coloring of various regions of the chemical space.
During AL cycle 6 (Figure 7, AL 6, TI row), which employs a
random selection of the molecules, sampled molecules are
spread across the chemical space and, as expected, the majority
of molecules have a positive ΔΔG. Notably, the model’s errors
(Figure 5) did not increase, which supports the observation of
model convergence. Thus, we conclude our study with the
exploitative AL cycle 7, as discussed above.

Analysis of the Ligands with Improved Predicted Binding
Affinity. Two common modifications in the naphthalene ring
of N-[(1R)-1-arylethyl]arenecarboxamide were present in the
molecules with improved predicted binding affinity (scaffolds

Figure 9. Representative binding poses of the reference ligand (A),
ligand 1 (B), and ligand 3 (C). Carbon atoms of ligands and protein
residues are shown in green and gray, respectively. Nitrogen, oxygen,
and fluorine atoms are shown in blue, red, and cyan, respectively.
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S1 and S2 in Figure 8A). The first modification (S1) is a
substitution of hydrogen by fluorine in position 4 of the
naphthalene ring. The second modification (S2) includes
substitution of the β-naphthalene carbon to nitrogen and an
addition of a methoxy group in position 7 of the aromatic ring,
which makes it a 7-methoxyisoquinoline moiety. To assess the
relative importance of these modifications, we computed the
RBFEs GRL0617 → M1 and GRL0617 → M2 (Figure 8B),
which resulted in improved binding affinity by −0.84 and
−0.99 kcal/mol, respectively. The third common structural
feature of ligands with improved predicted binding affinity was
the presence of fused 5,6- and 6,6-bicyclic aromatic systems in
place of the benzene ring of the reference ligand (Figure 8C).
Among ligands with negative TI ΔΔG, there were 35 (∼26%)
molecules with similar aromatic systems. Nine of these
molecules showed more than a 100-fold improvement in
predicted binding affinity (TI ΔΔG < 2.73 kcal/mol; see
Figure S2). For ligands with the highest predicted ΔΔG
(ligands 1−3, see Figure 8C), computed TI ΔΔG were −4.06,
−4.05, and −3.72 kcal/mol, respectively, which corresponds to
dissociation constants of 2.85, 2.90, and 5.07 nM (these values
were obtained by converting TI ΔΔG to ΔG by eq 8 and then
converting these ΔG to Kd according to eq 6).

The reference ligand benzene ring substituents displayed
specific interactions with the protein: the amino group formed
hydrogen bonds with both the amide group of Gln269 and the
hydroxyl group of Tyr268, and the methyl group formed
hydrophobic interactions with the side chains of Tyr264,
Tyr273, and Leu162 (Figure 9A). The representative binding
poses of the ligands 1 and 3 and the reference ligand are shown

in the Figure 9B,C. The amide group of the linker formed
hydrogen bonds with the main-chain amino group of Gln269,
the hydroxyl group of Tyr264, and the carboxylic group of
Asp164. The naphthalene ring of the reference ligand and
ligand 3 and isoquinoline ring of ligands 1 and 2 form
hydrophobic interactions with the side chains of Pro248 and
Tyr268. The benzene ring of the reference ligand and ligands
2, 3, and the pyridine ring of ligand 1 form hydrophobic
interactions with aliphatic regions of the side chains of Gln269
and Asp164.

Modifications present in ligands 1−3 allow for several
protein-ligand interactions absent in the reference ligand. The
methoxy group of ligands 1 and 2 forms polar interactions with
the main chains of Gly266 and Asn267. The pyrazole ring of
ligands 1 and 2 and also the pyrazine ring of ligand 3 form
polar interactions with the side chains of Tyr268 and Gln269.
Notably, the analog of ligand 3, in which a benzene ring methyl
substituent is absent, has a TI ΔΔG of −1.56 kcal/mol, which
suggests that the presence of this methyl group is important for
binding affinity improvement.

Benchmarking the Free Energy Calculation Protocol. To
validate the performance of the TI RBFE calculation protocol
used in this work, we performed RBFE calculations for five
PLpro inhibitors for which experimental binding affinities were
reported by Shen et al.17 (Table 1). Ligands for benchmarking
were chosen to be non-protonatable at physiological pH. The
same ligands’ RBFEs were also predicted using the final ML
model (Table 1).

For three ligands (20, 22, and 27), the absolute error
between the experimental and the computed RBFEs is below 1

Table 1. Experimental and Computed Binding Free Energies for the Benchmark Set of PLpro Inhibitorsa

aLigand numbers (No.) are given in accordance with Shen et al.17 ΔGexp is the experimental absolute binding free energy converted from
dissociation constant by eq 6 (see Methods). ΔΔGexp is the experimental RBFE with respect to the reference ligand obtained from ΔGexp by eq 7.
ΔΔGTI is the RBFE computed by TI. ΔGTI is the absolute binding free energy obtained from ΔΔGTI by eq 8. ΔΔGML is the RBFE predicted by the
final ML model.
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kcal/mol. For ligands 21 and 23, the absolute error is
approximately 2 kcal/mol. In this case, the RBFE calculations
underestimated a decrease in the binding affinity caused by the
substitution of the benzene ring methyl substituent with a
trifluoromethyl group (ligand 21) or a bromine atom (ligand
23). This discrepancy may be due to poorer parametrization of
halogens compared to CHON atoms in GAFF.

The MAE of computed RBFEs with respect to the
experimental values was 1.07 kcal/mol for TI and 0.83 kcal/
mol for ML. The TI RBFE MAE was comparable with
benchmarks reported recently.8−11 In particular, MAEs for the
RBFE calculations performed using the same lambda window
schedule as used in this work were in the range of 0.74−0.91
kcal/mol for four protein−ligand systems;11 however, absolute
errors of 2 kcal/mol and above were reported for a small
number of ligands in the same studies. Therefore, it is still
challenging to achieve accurate RBFE predictions for all
ligands included in a chemical space of interest. Further
advances in force fields will allow for improved accuracy of the
RBFE calculations.

■ CONCLUSIONS
Lead optimization remains a substantial computational
challenge for modern computational chemistry. Computation-
ally intensive campaigns, such as molecular dynamics for
relative binding free energy simulations, are typically severely
limited by the availability of computational resources as well as
the difficulty of performing computations in a high-throughput
manner. For example, the COVID-19 Moonshot initiative ran
over 5000 free energy simulations exploiting the global
Folding@home computational initiative.53 This massive under-
taking used hundreds of millions of computer hours to achieve
a 100-fold improvement in potency against the SARS-CoV-2
main protease. Such resources are rarely available. Here, we
were able to perform RBFE calculations only for a subset of
ligands, rather than for all available analogs of a lead compound
by coupling such calculations with an active learning approach,
which included an automatic machine learning model
selection.

Using a selection of molecules enriched by the Auto-ML
procedure, we identified 133 potential SARS-CoV-2 PLpro
inhibitors predicted to have improved binding affinity by
performing the TI RBFE calculations for only 253 ligands.
Remarkably, the alchemical RBFE calculations predicted
improved binding affinity for 70% of ligands selected by ML
in contrast to only 11% of ligands selected randomly. We
believe that the approach developed here is an important step
toward accelerating the lead optimization stage of drug design
projects by leveraging modern computational approaches.
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