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ABSTRACT: Advances in machine learned interatomic potentials
(MLIPs), such as those using neural networks, have resulted in short-
range models that can infer interaction energies with near ab initio
accuracy and orders of magnitude reduced computational cost. For
many atom systems, including macromolecules, biomolecules, and
condensed matter, model accuracy can become reliant on the
description of short- and long-range physical interactions. The latter
terms can be difficult to incorporate into an MLIP framework. Recent
research has produced numerous models with considerations for
nonlocal electrostatic and dispersion interactions, leading to a large
range of applications that can be addressed using MLIPs. In light of this,
we present a Perspective focused on key methodologies and models
being used where the presence of nonlocal physics and chemistry are
crucial for describing system properties. The strategies covered include MLIPs augmented with dispersion corrections, electrostatics
calculated with charges predicted from atomic environment descriptors, the use of self-consistency and message passing iterations to
propagated nonlocal system information, and charges obtained via equilibration schemes. We aim to provide a pointed discussion to
support the development of machine learning-based interatomic potentials for systems where contributions from only nearsighted
terms are deficient.

1. INTRODUCTION
For the last several decades ab initio molecular simulations
have been instrumental in overcoming challenges faced by the
chemical and materials sciences.1 These methods have a
foundation in the theories of quantum mechanics (QM) and
offer computational scientists a means of understanding the
atomistic- and electronic-level details governing material and
molecule behavior. The value of ab initio molecular
simulations is proven, and increasing computational power is
furthering their widespread use, e.g., the development of
exascale computing.2 Despite this progress, many systems
remain too large, and many topics require a number of
simulations too great to be investigated solely by QM
calculations. The rise of data-driven techniques, particularly
simulations performed with machine learned interatomic
potentials, has demonstrated the possibility to explore these
otherwise computationally demanding areas without sacrificing
ab initio accuracy.3

The utility of particle-based molecular and materials
simulations is connected with generating an accurate potential
energy surface (PES) representation, which is a landscape that
underpins reactivity, phase stability, and other observable
properties. Arguably, a “holy grail” for computational scientists
is to efficiently sample large numbers of readily available and
exceptionally accurate PESs. High-quality PESs are typically
obtained using QM methods, but there is an appreciable cost

associated with the level of theory used to approximate
solutions to the Schrödinger equation.4 Considering an
example of a multielectron (Nelec) system, the number of
arithmetic operations for a QM calculation could scale from
order O(Nelec

3) to order O(Nelec
7) depending on the method

needed to achieve the desired accuracy.5 In cases where a
system has more than 102 atoms, the computational require-
ment of QM methods is dissuading, and computational
chemists and materials scientists are relegated to using lower-
dimensional representations that trade PES details for
efficiency. Fortunately, this accuracy−efficiency trade-off,
classically thought of as pervasive and unavoidable, is
beginning to be overcome by the rapid expansion of machine
learned interatomic potentials (MLIPs).6−8 MLIPs can be
constructed using numerous techniques, such as neural
networks, reinforcement learning, or kernel methods. We
choose to leave discussion on the subtleties of different
approaches to available reviews9−12 and, instead, highlight
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herein the specifics regarding MLIPs with long-range
interaction strategies.

The overarching concept of MLIPs is for a model to learn
the relationship between a set of atomic/molecular features
and accurate training data. Reference energy and forces can be
obtained using high-throughput QM calculations, where the
goal of the resulting MLIP model is to achieve near ab initio
accuracy with orders of magnitude lower computational cost.
Following successful training and validation, an MLIP can infer
the interaction energies of systems with feature space
representations near the training data. The inference process
can be referred to as interpolation and extrapolation; however,
the distinction between these terms may lack clarity in high-
dimensional model spaces.13 Many MLIPs reported thus far
choose descriptors of local atomic environments for model
training. Relying on local features as MLIP input vectors can
introduce complications for simulating extended systems with
relevant long-range interactions,14 see Figure 1. Heterogenous

bulk phases,15 dispersion,16 hydrogen bonding,17 and extended
charge transfer18 are a few types of phenomena that require
careful consideration when constructing an MLIP model.
Therefore, while the idea of MLIPs may present itself as
straightforward, complexities quickly arise depending on the
physicochemical behavior governing the systems of interest.

In our experience, one objection to adopting MLIPs is a lack
of demonstrated ability to capture physics and chemistry
beyond short-range cutoffs (e.g., 5 Å). Recent progress has
produced various MLIP models with simple to sophisticated
treatments of long-range interactions,19 and such an objection
is beginning to lose its basis. Despite such developments,
demonstrations that these MLIPs can be used to address
chemical and materials science challenges are lacking. Future
efforts are needed to validate that interaction mechanisms used
by modern MLIPs can successfully reproduce relevant long-
range physics and chemistry in an application or experimental
setting. Thus, this Perspective provides a timely and focused
discussion on the current state of developing MLIPs that
include long-range interactions. It should be noted that our use
of the term long-range covers the energetic contributions and
structural features exhibited on length scales beyond truncated
local atomic environments (see Section 2), which we will refer
to as the short-range or nearsighted potentials. A brief
background on short-range potentials is given to frame the
challenge of including long-range interactions with MLIPs.
Intricacies of machine learning practices and an extensive

description of the evolving machine learning landscape in the
chemical sciences is outside the topic of this Perspective, and
readers are directed to a number of reviews covering these
details.6,19−22 Overall, we discuss models and methods that can
be applied to the two major long-range interaction
components: dispersions and electrostatics, where the latter
has experienced significant methodological development.

2. BACKGROUND
Prior to expanding on long-range physical interactions, the key
concepts used in developing intrinsically short-range MLIPs
are summarized. Our focus is on neural network potentials
(NNPs) that utilize an atomic environment vector (AEV)
input representation that shares Behler-Parrinello and ANI-like
functional forms.23,24 This input representation is chosen for
the general illustration of the issues that nearsighted potentials
face. Several other input representations exist,25−27 and they
can also suffer from similar deficiencies. These include spectral
neighbor analysis,28 smooth overlap of atomic positions,29 and
invariant polynomials,30 to name a few. Regardless, the local
interaction energy (Ulocal,MLIP) of an N-particle system can be
described as a sum of each particle’s potential energy
contribution (Ui,MLIP).

U U
i

N

ilocal,MLIP ,MLIP=
(1)

The magnitude of Ui,MLIP is a function of the environment
that particle i is present in; i.e., the energy is defined by the
collection of neighboring particles and their relative positions.
NNPs utilize eq 1 by computing particle interaction energies
with machine learned predictions based on atomic environ-
ment vectors as inputs. An AEV is constructed by defining a
suitable cutoff function for pairwise neighbor distances (rij)
that smoothly approaches a value of zero at a defined cutoff
(Rc). ANI potentials utilize a piecewise cosine cutoff function
( fc) with the following form.
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The cutoff function is a main component to calculate atom-
centered symmetry functions (G), which serve as invariant
input vectors for machine learned interatomic potentials.
Imposing a cutoff is a key topic because it enforces that AEVs
are short-range by design, and therefore, the resultant neural
network potential is short-range without additional consid-
erations. The AEV, defining an atom’s local environment, can
be composed of several two-body radial (gm,i

R ) and three-body
angular symmetry (gm,i

A ) functions.
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Figure 1. Summary of the general energetic contributions composing
the total potential energy (Utotal) of a system. Ulocal refers to the short-
range system energies and is typically inferred using a machine
learning model trained on local features. Dispersion corrections,
electrostatics, and induction are collectively referred to as the long-
range interaction energy contributions.
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In these equations, the values RS and θS are shifting factors
used to probe specific regions of particle i’s local radial and
angular environments, respectively. η and ζ control the amount
of the atomic environment observed by each probe. A set of
shifting and width parameters is denoted by the subscript m,
whose systematic variation allows one to include chemical
features across the local atomic environment up to the cutoff.
The collection of G values formed across sets m compose the
AEV input representation used by machine learning models.
Overall, RS, θS, η, and ζ values are selected to yield an AEV
resolution that distinguishes between diverse systems without
unnecessary G calculations. The development of eqs 3 and 4
from the cosine cutoff function introduces a challenge for
accurately representing a PES, namely, AEVs built from these
functions produce machine learned (ML) models blind to
long-range structure and physical phenomena.31

Depending on the construction of the AEV input
representations, an ML potential model can be trained to
infer atomic interaction energies and forces. To provide a
concise overview, we restrict our following discussion mainly
to deep NN models; however, similar considerations apply for
alternative ML approaches, for example, Gaussian-approxima-
tion potentials (GAPs).32 In multilayer NN models, the input
representation and output energy are the physically relevant
quantities. The intermediate layers consist of parameters that
are optimized during training to provide the nonlinear
transformation of the input representation needed for an
accurate inference of energy and forces.

3. MLIPS WITH LONG-RANGE INTERACTIONS
Long-range interactions in extended chemical systems
contribute to numerous physical phenomena: e.g., thermody-
namic phase behavior,31 variations in conformer geometry,33

permeation rates of molecules through porous materials,34

protein structure and dynamics,35 self-assembly or directed
assembly of macromolecular complexes,36 and interfacial
properties.37 It could be suggested that interactions that
occur over longer length scales can be directly predicted with
an MLIP model by increasing the cutoff radius used by the
atom-centered spherical symmetry functions (or equivalent
local atomic descriptor). To a certain extent, it is possible to

include longer-range contributions with model components
specifically trained to reproduce intermolecular interactions;
for instance, AP-NET utilizes 8 Å cutoff atom-pair symmetry
functions for evaluating monomer−monomer interaction
energies.38 There is an eventual pitfall for increasing the
AEV cutoff: namely, the number of descriptor calculations
increases, which yields larger compute requirements to capture
physical interactions that slowly decay with separation
distance. The learning task can also become more challenging
due to the fact that the chemical configuration space grows
with larger cutoff radii, thus, the issue of sufficient sampling
compounds.

Distance scaling relationships of long-range interactions vary
depending on the systems studied and the physical phenomena
considered. Most often applied in classical empirical force
fields are Coulomb and Lennard-Jones potentials, displaying
rij−1 and rij−6. Beyond these common functional forms,
polarization contributions display rij−4 distance scaling for the
leading interaction term (monopole-dipole) of the induction
energy.39 Even further, work by Ambrosetti demonstrated that
the power-law scaling of van der Waals interactions can range
between ca. −2 and −5 depending on the type of
nanostructure and separation distance, which is a result of
wavelike fluctuations in charge density.40 This list of slowly
decaying distance relationships is not exhaustive, but it
emphasizes that MLIP developers need to carefully consider
the length scales of chemical and physical interactions
underpinning the target application space. As a specific
example, the dissociation curves of charged dimers are cases
where non-negligible long-range energy contributions are
observed up to tens of angströms, see Figure 2.

Most MLIPs can be classified according to three main
strategies when considering their treatment of long-range
interactions and nonlocal phenomena: (1) neglect their
contribution and only include short-range features, (2)
augment MLIPs with standard long-range functional forms,
e.g., Coulomb’s law, where parameters have local environment
dependency, and (3) MLIPs with long-range interactions that
are sensitive to global system characteristics. The choice to
adopt one of these three strategies should be physically
motivated. As an example, systems with a narrow range of

Figure 2. Example of long-range interaction relevance using charged dimer dissociation curves. Non-negligible interaction energies are captured
with separation distances up to tens of nanometers. Black dots are DFT reference calculations, red lines are MLIPs with only local descriptors, and
green/blue lines are nonlocal MLIP models presented by Grisafi and Ceriotti.41 Reprinted with permission from ref 41. Copyright 2019, American
Chemical Society.
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elements and short screening distances can oftentimes be
simulated using strategy 1 with minimal loss of accuracy, which
has been demonstrated across many studies.23,42−45 In these
cases, the adoption of strategy 2 or 3 results in additional
computational expense and training complications without
appreciable accuracy gain for the target application. On the
contrary, employing strategy 1 for systems displaying
phenomena such as long-range polarization and electrostatics
will likely lead to poor predictions. The concept of choosing an
appropriate model design for a given system is well-known in
traditional molecular simulations and extends to those being
performed with MLIPs.
3.1. Dispersion Corrections. van der Waals forces are a

ubiquitous type of atomic interaction that originate from
fluctuations in electron density distributions.46 They can be
partitioned into short-range repulsion terms and long-range
attraction; the latter being referred to as the dispersion
interaction. It is not necessary to expand on the inclusion of
short-range repulsions in our MLIP discussion because they
can be learned by a nearsighted model or explicitly added using
a collection of empirical terms, such as the Ziegler-Biersack-
Littmark (ZBL) potential.47,48 For small isolated systems,
which define the application space of many reported MLIPs,
the contribution of dispersion interactions can be minimal, and
as a result, their neglect or inclusion may not affect inference
accuracy. However, the collective strength of dispersion forces
in larger systems is often non-negligible, and they can be a
significant factor in defining properties such as polymer
cohesive energy density49 and organic molecular complex
stability,50 to name a few. Therefore, it is worthwhile to expand
on the treatment of long-range dispersion interactions in the
design of an MLIP.

One level of consideration for dispersion interactions is in
the construction of the reference training data. MLIP model
developers are often guided by the goal of obtaining density
functional theory (DFT)-quality accuracy with near empirical
potential computational cost. This often equates to applying
dispersion correction strategies51 to DFT calculations that use,
for instance, generalized gradient approximation density
functionals,52 or one can choose to neglect dispersion
correction in the reference data and include them explicitly
as part of the MLIP model. As an example, the ANI family of
MLIPs is based on locally defined symmetry functions (see
Section 2), yet dispersion corrections are applied to the entire
system ad hoc, regardless of AEV cutoff, to expand the
interaction range of the otherwise inherently nearsighted

models. As a counterexample, Morawietz et al.53 trained a set
of models, also based on locally defined symmetry functions,
directly to dispersion-corrected reference data to obtain good
agreement with the density maximum of bulk water studied as
a function of temperature. The key distinction between these
two examples is whether dispersion correction is applied “on-
the-fly” during inference or learned implicitly by the MLIP.
The latter strategy can be more computationally efficient;
however, it will ultimately lead to incorrect predictions for
systems where dispersion contributions beyond the local AEVs
cannot be neglected. The MLIP training data of Morawietz et
al. consisted of DFT calculations augmented with the D3
dispersion correction scheme from the 2010 landmark work of
Grimme and co-worker.54 D3-corrected DFT calculations are a
frequently used tool for construction of MLIP reference
training data for organic systems; see eq 5 for the 2-body
dispersion correction functional form

U s
C
r

f r( )
ij n

n
n
ij

ij
n ijDisp

2 body

6,8,10,...
d.n=

= (5)

where sn, Cn
ij, and fd.n represent the scaling factors, dispersion

coefficients, and damping functions, respectively. Despite the
popularity, it is worth commenting that dispersion-corrected
DFT is an active field of research and defaulting to D3
corrections could incur error depending on the chemical
diversity and/or system size reflected in the target application
space.55,56 Moreover, the importance of many-body dispersion
effects is another consideration, which can result in non-
negligible interaction energy contributions with increasing
system size. As an example, Tkatchenko et al. used crystalline
benzene as a model system to demonstrate that pairwise
Tkatchenko-Scheffler dispersion corrections overestimated the
crystal cohesive energies and that a many-body dispersion
(MBD) correction based on coupled and uncoupled quantum
harmonic oscillators substantially corrected this error.57 In
cases where the D3 method of Grimme is insufficient, one
could seek to improve the interaction energies by including a
3-body dispersion term (C9) with the Axilrod−Teller form.58

These two examples are select cases among many, and those
looking to develop MLIPs that can be applied to systems with
long-range and many-body dispersion effects are directed to
the in-depth discussion provided by Hermann, DiStasios, and
Tkatchenko46 or Grimme and co-workers.59

For bulk systems with long screening distances, an MLIP
built strictly using Ulocal trained to DFT-D reference data can

Figure 3. Molecular dynamics simulation results using a Gaussian approximation potential (GAP) to model the interactions of condensed-phase
phosphorus. (a) Visualization of the liquid-phase phosphorus simulation cell. (b) 2-Body distance correlation function, where DFT (purple) is the
reference calculation and GAP (orange) is the Gaussian approximation potential ML model. (c) 3-Body angular correlation function. Reprinted
with permission from ref 60. Copyright 2020, The Authors.
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be insufficient. This is related to the previously discussed
limitation of nearsighted potentials, namely, they lack knowl-
edge of structure or interactions beyond the local atomic
environment. Instances where nonlocal structure impacts local
electron density fluctuations can require dedicated terms for
accurate modeling. Deringer et al. successfully implemented
one solution, where an explicit two-body rij−6-dependent
dispersion interaction term is used to reasonably reproduce
the structure of condensed-phase phosphorus (see Figure 3)
by training on DFT data from calculations using the PBE
functional and many-body dispersion correction.60 Con-
densed-phase phosphorus is challenging to simulate because
of its mixture of covalent and noncovalent features; however, it
could be successfully modeled using only Ulocal,MLIP and a two-
body rij−6-dependent dispersion term because the systems were
chemically homogeneous and neutral. The concept of
including an rij−6 dispersion interaction term alongside an
ML-based Ulocal,MLIP calculation was also used by Wen and
Tadmor for multilayer graphene, which was similarly trained
with PBE and many-body dispersion-corrected DFT calcu-
lations.61 The work by Muhli et al.62 utilized a different
strategy, where short-range descriptors were used to predict
the effective atomic Hirshfield volumes needed to employ the
dispersion correction scheme of Tkatchenko and Scheffler,63

which enabled them to investigate the C60 phase diagram and
associated driving forces up to 5000 K and 1000 GPa. Their
model, trained on PBE reference data from DFT calculations,
qualitatively reproduced a number of the carbon structure
observations obtained experimentally. The successes of these
two carbon MLIPs have a similar basis as the model by
Deringer et al., namely, contributions from long-range
electrostatics and polarization can be neglected because the
systems are chemically homogeneous and treated as closed-
shell. Incorporating explicit dispersion energies with parame-
ters (or their dependencies) obtained from ML-based
predictions using local structure is an approach that
conceivably encourages NNP generalizability and is worth
further exploration.
3.2. Inference of Ab Initio Point Charges. Augmenting

a short-range MLIP with an explicit electrostatic energy term
(Ues), see eq 6, is a straightforward approach to include long-
range interactions between charge sites into an ML-based
model. From a quantum mechanical view of atoms, Ues is a
complicated function of the electron density, and it is
oftentimes computationally convenient to condense this
distribution onto localized point charges. One difficulty that
arises when using this strategy to account for long-range
electrostatic interactions is that mapping electron density/
electrostatic potentials onto point charges is an ambiguous task
that lacks a unique solution. This has led to numerous electron
density partitioning schemes64−66 that all give distinct atom-
centered point charges.67 The consequence is that NNPs can
be constructed using a variety of charge assignment strategies
that vary in transferability, yielding an important consideration
for interpreting simulation results.

U U Usystem local,MLIP es= + (6)

Some developers opt to augment their ML-based short-
range potentials with Coulomb’s law and Ewald summation
using static formal charges. This strategy is useful when integer
charges can be rationally assigned using fundamental chemical
principles; for example, this has been demonstrated in
simulations of crystalline nitride materials.68 Electrostatic

interactions based on formal charges are simple but narrow
in the types of systems they can be applied to, and such a
strategy is not applicable to most organic systems. Atom-
centered porges of organic species are typically noninteger and
exhibit variation with the atomic local environment. This
originates from chemically identical molecules with unique
conformations displaying differences in electron density
distribution. One can address conformational-dependent
partial charges by training an ML model to predict them
from the AEV input representations. The system energy can be
reformulated as a local interaction energy with monopole
electrostatic contributions as

U U

q g g q g g

r

( , ) ( , )

4i

N

J I

n
i m i m i j m j m j

ij

system local,MLIP

1

1
,

R
,

A
,

R
,

A

=

+
{ } { }

= > (7)

where qi and qj are the charges on atoms i and j separated by a
distance rij, and ε is the screened dielectric constant. We are
omitting dispersion and induction terms from eq 7 for clarity.
It is important to note that this equation is only valid when
phenomena related to electron density (re)distribution�for
example, induction or multipole electrostatics�are dominated
by features on a length scale less than the Ulocal,MLIP cutoff.
Instances where this is not the case are discussed further in
Section 4. Moreover, eq 7 can only be appropriately applied for
systems where the dielectric screening is homogeneous.
Regardless, learning conformation-dependent charges is used
by several MLIPs, including PhysNet,69 HIP-NN,70 and
models by Behler and co-workers.71,72 It is worth highlighting
that charges predicted from ML models may need to be
adjusted to ensure they sum to the net charge of the system.
Choosing to use simple charge distribution normalization or
more complex species-specific weighting schemes can affect
model transferability and accuracy.

An alternative to predicting atom-centered point charges has
recently been used in two studies reported by Zhang et al.,73,74

where electrostatics are calculated using the concept of
maximally localized Wannier functions.75 Their approach
maintains the high-level form of eq 6 but expands the Ues
term as a function of Wannier centers (WCs) with a charge
value of 2e- and ions having a charge value of atomic nuclei +
core electrons. As an example, a water molecule has four WCs
each carrying 2e- and three nuclear positions with 1e, 1e, and
6e for the hydrogens and oxygen, respectively. The total
system energy is calculated by representing the potential
energy of WC and nuclei-centered charges with Gaussian
charge distributions (UGdt

).
U U Usystem local,NN Gt

= + (8)

The calculation of UGdt
can be carried out in Fourier space as

U
V

e
m

S m1
2

( )
m m L

G
0,

( )

2
2

m

t

2 2
2

=
| | (9)

where L is the Fourier space cutoff, V is the volume of the
simulation cell, and S(m) is the charge weighted structure
factor of the nuclei and WC positions. Model implementation
requires two ML components to be trained using input from
the local atomic environments: (1) to calculate Ulocal,NN and
(2) to provide the WC positions. This framework has not yet
been applied to a diversity of systems with nonlocal effects, but
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the current design effectively captures long-range electrostatic
interactions, which, for example, have been demonstrated in
different types of water dissociation curves. Regardless, it
should be emphasized that the concept of using WCs as the
basis for electrostatics is attractive because they are not
restricted to the spherical simplifications of atom-centered
point charges. This may lead to better MLIP predictions
because of a flexible representation of the electron density
distribution.
3.3. Models Based on Iterative Refinement. In contrast

to single-step predictions of electrostatic contributions, a
number of MLIP models have devised schemes based on
iterative convergence. We choose to divide these models into
self-consistency and message-passing methods. The defining
feature of self-consistent approaches is the iterative refinement
toward a converged prediction from an initial estimate, where
the objective value is related to an output which itself is used to
derive new inputs (for example, charges). Differing from the
cyclic convergence of a self-consistent procedure, message-
passing methods use consecutive calculation steps that are
meant to propagate chemical information across a system
through communication between neighboring atoms. These
propagation steps, i.e., message passes, can be thought of as
increasing the amount of nonlocal details available at each
atomic site that can be used to predict chemical properties
such as atomic charges. Additional message-passing steps
alleviate the difficulties associated with methods only using
truncated local environments, e.g., those discussed in Section
2, because input representations are refined using information
about distant chemical structures that is acquired through
communication with intermediate neighboring atoms. This
iterative propagation of information is related to the idea of
molecular graph-like representations, where atoms (nodes) are
connected to their neighbors (edges) to form a “message-
passing network”. One of the greatest advantages of MLIP
models that use message passing is their ability to learn their
own flexible chemical representations that are not bound by
nearsighted features, which conceptually encourages extensi-

bility and generalizability. Several diverse MLIP models
applying these strategies are highlighted herein.

The work by Gao and Remsing reports a long-range MLIP
approach called self-consistent field neural network
(SCFNN),76 which combines an iterative refinement approach
with maximally localized Wannier centers (WCs) for
calculating electrostatics. The strategy of SCFNN is to execute
two MLIP components sequentially: (1) a set of neural
networks for predicting WC positions and the change in those
positions due to an effective electric field, and (2) a set of
networks for predicting local configurational and effective field
forces on the atoms. A self-consistency procedure is
implemented to converge the WC positions. Following initial
WC estimates, via a neural network, a loop is carried out where
perturbations to the WC positions are calculated based on the
effective electric field, which itself is a function of the WC
positions. After applying this perturbation, a new effective field
is calculated, and the procedure repeats until the inferred
perturbation to the WC position is below a chosen threshold
(∼10−4 Å). Eventually a converged electric field is obtained,
and the authors use it as input alongside AEV symmetry
functions to calculate atomic forces with the second set of
neural networks. SCFNN has been applied to a single chemical
system, water, where structural features, long-range polar-
ization, and electronic properties were reproduced with
appreciable accuracy. This procedure by Gao and Remsing
has some resemblance with the works of Zhang et al.;73,74

however, the separation of short- and long-range electrostatics,
use of neural networks instead of explicit functional forms, and
assumption of linear response are notable distinguishing
features. Both studies report quality results for water systems,
and the extent to which the approaches are generalizable to
diverse systems is worth further investigation.

Xie et al. reported the so-called Becke Population Neural
Network (BpopNN),77 which focuses on refining q predictions
obtained from modified smooth overlap of atomic position
descriptors. An innovative feature of BpopNN is the use of a
self-consistent charge update scheme (SCF-q). The method-

Figure 4. Overview of the BpopNN architecture. A self-consistent charge optimization scheme is used to iteratively refine atom-centered partial
point charges and minimize the total predicted energy with respect to the overall charge distribution. Reprinted with permission from ref 77.
Copyright 2020, American Chemical Society.
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ology seeks to train a ML model to learn a potential energy
functional form (UBpopNN) that depends on the nuclear charges
(Z), Becke populations (P), and the atomic positions (r).

U U Z P r U Z P r

U Z P r

( , , ) ( , , )

( , , )

BpopNN local,NN es

intra

= +

+ (10)

The potential energy contributions having a dependency on
P enable the SCF-q scheme to be used. Following model
training on constrained DFT reference data,78 inference can be
carried out by minimizing the total energy with respect to the

Becke populations ( )0
U

P
BpopNN , which can be performed

using optimizers implemented in automatic differentiation
packages, e.g., stochastic gradient descent or the Adaptive
moment solver (Adam).79 In practice, initial guess charges are
supplied, and iterative optimization steps are used to arrive at
an accurate distribution of atom-centered charges. The
selection of initial guess charges is a point worth emphasizing
because they can influence the optimized charge distribution
identified by the self-consistency procedure. An overview of
the BpopNN model workflow and architecture is provided in
Figure 4. To the best of our knowledge, BpopNN has only
been applied to proof-of-concept examples of interaction
energies, structural transitions, and charge distributions of
lithium hydride systems.

Message-passing neural networks (MPNNs) are a versatile
class of machine learning models that use iterative updates as
part of their predictions.80 Each iteration, referred to as a
message-passing step (t), increases the amount of nonlocal
information available to every atom in a system. While a clear
practicality issue exists with performing large numbers of
message passes, for many organic systems (those without large
nonlocal effects) t = 3 can be sufficient to reach accurate
predictions.81 It worth expanding upon the general message-
passing framework to present the mechanism that MPNN-
based MLIPs can use to include nonlocal interactions. The
central idea of an MLIP with message passing is for atoms in a
system to maintain an abstract hidden state representation (hit)
that is updated through communication with nearby neighbors.
The details of hit are not informed by the model developer, and
the MLIP learns them during training. In most cases, this
necessitates the training of two neural networks: a message-
passing function and a hidden state update function. Neural
networks are not strictly required, and any sufficiently flexible
and learnable model can be used. Regardless, the updated
hidden state maintained by atom i (hit+1) is determined using
the update function (Ut), which transforms the previous
hidden state (hit) based on the cumulative message (mi

t+1)
received.

h U h m( , )i
t

t i
t

i
t1 1=+ +

(11)

The message-passing function (Mt) is responsible for
defining the contribution that each neighbor of atom i,
denoted as N(i), makes to the cumulative message. The atomic
neighbors are defined up to a cutoff distance, e.g., atomic
separations ≤5.0 Å.

m M h h e( , , )i
t

J N i
t i

t
j
t

ij
1

( )
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Mt is learned through training�similar to Ut�and is a
function of each atom’s hidden state and any additional

features (eij) between atoms i and j. The fact that eq 12 has a
dependency on both hit and hjt is crucial because it supports that
every message-passing iteration propagates system information
from further away atoms. Thus, increasingly nonlocal features
can be incorporated via more message-passing steps to refine
each atom’s hidden state. After a number of message-passing
iterations, the hidden states can be utilized for the inference of
atomic properties, including energies, charges, electronegativ-
ity, and so on.

Several models have been based on iterative update/
message-passing schemes, including Deep Tensor Neural
Networks (DTNNs),82 SchNet,83 SpookyNet,84 and AIM-
Net.81 To demonstrate the transferability of using iterative
schemes, we expand on the AIMNet model, which was
reported by Zubatyuk et al. in 2019 to have applicability to
neutral organic molecules composed of HCNOFSCl.81 In
AIMNet the hidden state representation takes the form of a
16-dimensional embedding vector (az) that is used for defining
atomic features. As an aside, the atomic embedding strategy is
used because it is a solution to the unfavorable scaling problem
that species-specific networks face when the number of
elements in an application space grows. Regardless, the radial
and angular atomic environments, as defined in Section 2, are
multiplied with the atomic embeddings according to

G g am i
j

m i j j,
R

, ,
R=

(13)

and

G g F a a a a( , )m i
j k

m i j k j k j k,
A

,
, , ,

A
NN1

= [ · + ]
(14)

where gm,i,j
R and gm,i,j,k

A are vectors of the j and j,k neighboring
atom components of eqs 3 and 4, respectively. In eq 14, FNN is
a neural network trained to construct an effective angular
embedding vector, and subscripts i, j, and k are the atoms
composing the molecular geometry component. The az values
are updated according to the scheme described above, where
neighboring messages are directly accounted for up to ∼5 Å
with each iterative step. The final atomic feature vector ( f i)
used for molecular property prediction is a concatenation of
the terms from eqs 13 and 14 that are flattened and undergo a
nonlinear transformation via another neural network.

f F G G( , )i m i m iNN ,
R

,
A

2
= (15)

AIMNet uses f i to predict system features, such as atomic
partial charges, which accurately reproduce those derived from
DFT calculations. Furthermore, additional nonlocal details are
beginning to be included in message-passing models. For
example, SpookyNet84 and AIMNet-NSE85 can both model
spin states, which are valuable for simulations including
reactive events and open-shell species. These models are
motivated by the fact that MLIPs that rely only on nuclear
degrees of freedom lack an ability to accurately infer
interaction energies of species other than neutral singlets.
There are a number of cases such as bond-breaking or
transition-state chemistry, where failing to account for a proper
electronic spin state results in a drastic misrepresentation of
the potential energy surface; for example, see Figure 4b of ref
84. To highlight one working mechanism, AIMNet-NSE
introduced a neutral spin equilibration procedure that is
applied as
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where Qs is the total molecular spin charge state, and q̃is and f is
are partial spin-polarized atomic charges and weight factors
predicted by the neural network, respectively. Subsequent
message-passing steps further improve the AIMNet-NSE
model prediction of localized spin charge states. As an
example, Figure 5 shows spin charge state predictions of the

anionic and cationic forms of 4-amino-4′-nitrobiphenyl as a
function of message passes. It can be seen that, for t = 1, i.e.,
without neutral spin equilibration, the spin charge-densities are
approximately equivalent. However, after t = 3 more accurate
wave-like spin charge density distributions are predicted,
showing improved agreement with DFT natural bond orbital
(NBO) analysis. Overall, the ability of AIMNet-NSE to cover
an application space of neutral, cationic, and anionic species
with accurate spin charge density distributions is a significant
step toward MLIPs with broader generalizability.
3.4. Potentials Incorporating Charge Equilibration.

The empirical interatomic potential simulation community has
been interested in calculating geometry-dependent atomic
charges for several decades. For instance, force fields such as
ReaxFF86 have accomplished this task by using charge
equilibration (Qeq) schemes. For the purpose of clearly
distinguishing MLIP methodologies in this Perspective, we
chose to narrowly define Qeq to refer to methods that
determine the charge distribution of a given configuration by
solving a system of linear equations that include the interaction
energies between charge densities, the atomic partial charges,
and the atomic electronegativities. An important feature of this
formulation is that the electrostatic interactions between all
pairs of atoms are typically used to construct the charge−
charge interaction energy tensor, and thus, solving the Qeq
linear equations results in a fully global charge redistribution.
Among the most notable Qeq methodologies proposed is the

one by Rappe and Goddard,87 which has found recent use in
MLIP formulations. The fact that Qeq methods are well-
established molecular simulation techniques and are not
directly restricted by nearsighted approximations makes them
an attractive option to be utilized by MLIP practitioners. It
should be noted that many of the MLIPs discussed below are
methodologically consistent with that of Rappe and Goddard,
but several charge equilibration variants exist, such as the
electronegativity-equalization method (EEM),88 split-charge
equilibration (SQE),89 and atom-condensed Kohn−Sham
DFT approximated to second order (ACKS2),90 to name a
few.

The Qeq approach is described with the following functional
form

U q J q
q q

r
( 0.5 )

i

N

i i i i
j i

N
i j

ij
es,Qeq

1

2= + +
= > (17)

where χi and Ji are the electronegativity and atomic hardness of
atom i, respectively. The Coulomb calculation can be carried
out using a long-range summation technique, e.g., Ewald or
Wolf summation,91,92 but it has been omitted from eq 17 for
clarity. The objective of Qeq is to use optimization techniques
to solve the charge distribution {qi... qN} that minimizes Ues,Qeq.
This optimization is performed with the constraint of

Q q
i

N

i=
(18)

which ensures that the sum of partial atomic charges is equal to
the net charge of the system (Q). The distinguishing feature
between MLIPs that employ Qeq formalisms for their
electrostatic calculations is their treatment of χi and Ji. A
straightforward strategy is to apply parameters from existing
empirical data sets. This was employed by Yoo et al.93 in
developing a CHNO reactive MLIP, where they used χi and Ji
from ReaxFF to model small molecule bond dissociation and
various chemical features and reaction properties of 1,3,5-
trinitroperhydro-1,3,5-triazine (RDX).

Instead of adopting predetermined Qeq parameters, the
work of Nokikov and Shapeev applied regression techniques to
derive system-specific values for silica.94 Their study used
moment tensor potentials augmented with a standard Qeq
approach to evaluate phonon spectra, structural properties, and
the elastic tensor of α-quartz. Interestingly, they found the Qeq
scheme with parameters obtained via iterative optimization
yield no significant increase in accuracy but contributed further
to prediction uncertainty. The idea of a simple combination
between short-range MLIPs and charge equilibration is
compelling, but this result indicates a more intimate
connection between local and long-range model components
might be required for predictive accuracy.

To highlight an MLIP that utilizes charge equilibration with
integrated short- and long-range components, the so-called
fourth-generation Behler-Parrinello NNPs (4GNNP) of
Behler, Goedecker, and co-workers95 is discussed. 4GNNP is
a slightly modified local Behler-Parrinello model combined
with the CENT architecture, which is an ML-based charge
equilibration framework originally aimed at ionic crystal
applications.96 The total energy of a 4GNNP uses the same
high-level form of eq 6, where the calculation occurs in two
parts. In the first step, the CENT scheme is applied to calculate
Ues from the interaction of atomic charge densities. A Gaussian

Figure 5. Example of using AIMNet with neutral spin equilibration
and message passing to accurately assign atom-centered partial spin
charges of anionic and cationic 4-amino-4′-nitrobiphenyl. Each
message pass (t) refines the spin-charge density distribution, resulting
in accurate predictions in comparison with NBO analysis. Reprinted
with permission from ref 85. Copyright 2021, The Authors.
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functional form is used to distribute the charges centered on
atomic positions as
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with ri and αi being the atomic position and distribution width
parameter, respectively. Qeq is applied to determine the
solution of {qi... qN} that minimizes Ues,CENT, which is
expressed similarly to eq 17 as a truncated Taylor expansion
in the following form
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where Ui
0 is an atomic reference energy. A key contribution of

CENT is that χi is assumed to be environment-dependent and
predicted with an ML model from an AEV input
representation. It is worth highlighting that there is
methodological nuance between the training procedure of
the standalone CENT approach and 4GNNPs, and the
interested reader is directed to refs 19 and 95 on this point.
Regardless, the charge optimization process is a global system
operation carried out with electronegativity parameters that
vary depending on the local arrangement of atoms. This is the
main mechanism that allows for the 4GNNP to account for
events like nonlocal charge transfer.

The short-range contribution (Ulocal,NN) is calculated
following the optimization of {qi... qN}. Consistent with the
description in Section 2, the calculation Ulocal,MLIP in the
4GNNP framework is a summation of per atom energies

predicted from element-specific neural networks. A change is
made to the input feature vector to also include the charge
value determined in the CENT step. Considering this charge
value is obtained from a global process, it brings a unique
contribution to what would otherwise be a neural network
operating on strictly short-range features. An illustrative
example of the 4GNNP architecture is shown in Figure 6.
The prospect of the 4GNNP scheme is promising with
demonstrated success for challenging systems, including ionic
long linear alkanes, small sodium chloride clusters, and
interactions with a magnesium oxide surface, to name a
few.95,97

4. POLARIZATION, ML/MM, AND BEYOND
Our discussion up to this point has mainly focused on MLIPs
using pairwise dispersion, some comments on the importance
of many-body effects, and electrostatics via Coulomb’s law
(predominately via point charges). Nevertheless, it is known
that intermolecular interactions that extend beyond local
atomic environments consist of electrostatics, dispersion, and
induction;98 therefore, MLIP models neglecting one or more
of these terms are incomplete by design. Most MLIPs
discussed in the previous sections that make such assumptions
are either applied pragmatically or they do so with a justifiable
basis from a chemical understanding of the target application
space. Regardless, long-range interactions between molecules
and materials are defined by the electric fields produced by the
electron density distribution of each species, and thus,
electrostatics are accurately described using a multipole
expansion. Long-range interactions are often coupled, and
neighboring molecules and materials produce deformations of
electron densities from the isolated reference state (i.e.,
polarization) with an associated induction energy. Therefore,
an MLIP model that aims to accurately represent an

Figure 6. Schematic overview of the 4GNNP architecture. A charge equilibration scheme (shown on the left) is employed to obtain the globally
optimized partial point charges used in calculating long-range electrostatic interactions. The short-range potential (shown on the right) involves the
2nd generation BPNNP with an additional input parameter for the charge value on each atom. Reprinted with permission from ref 97. Copyright
2021, American Chemical Society.
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application space where polarization effects have significant
contributions beyond Ulocal,MLIP must include explicit func-
tional forms or features operating on the length scales of
relevant electron density redistribution. One of the simplest
approximations of polarization effects in an MLIP is an
electrostatic potential calculated via partial atomic charges that
vary as a function of atomic environments. As we have
previously noted, reducing a complex electron density
distribution to atom-centered point charges can produce
non-negligible error,99 and as a result, this is a poor
approximation to account for the induction energy of a system
with long-range polarization.

To the best of our knowledge, the only model that includes a
dedicated mechanism for long-range polarization contributions
is the previously discussed report by Gao and Remsing (see
Section 3.3). Their approach operates through self-consistent
determination of Wannier center locations through linear
perturbations in response to the effective electric fields at these
positions. Gao and Remsing’s SCFNN model was shown to
accurately predict the high-frequency dielectric constant of
water, which demonstrates reliable long-range electrostatic
screening effects. These results are encouraging; however, the
SCFNN model relies on linear response and the partitioning of
DFT data into short- and long-range contributions. It is worth
commenting that these dependencies do not limit Gao and
Remsing’s study of chemically homogeneous water systems,
but systematically extending this framework to a broad range of
chemistry does not appear straightforward. We are unaware of
any other MLIP that includes a dedicated explicit mechanism
for incorporating induction energy beyond local features.
Momentarily disregarding the issues associated with partial
point charges (i.e., monopole electrostatics), it could be argued
that charge equilibration or message-passing methods can
incorporate longer-range charge transfer effects and are better
suited for polarizable systems. While this is partially accurate,
these methods also have limitations arising from local
approximations. For message-passing MLIPs, such as AIMNet,
intermediate particles are required to allow the update function
to propagate information about nonlocal structure. Thus, a
polarizing body whose nearest neighbor is more than one AEV
cutoff distance away is effectively treated as an independent
system from the message-passing perspective. This is less of an
issue for condensed phases, but it can cause incorrectly
predicted physics in low-density systems (e.g., vapors).
Turning to the Qeq methods, these are performed as a global
system operation that allows charge to redistribute by
minimizing the electrostatic energy via the distribution of
partial charges, which can conceivably capture a degree of
polarization effects. For a specific example, the aforementioned
4GNNP predicts electronegativities from local features before
carrying out Qeq; however, these are chemically ambiguous
properties that also suffer from truncated AEVs, and a similar
limitation exists for describing long-range polarization
contributions. It is potentially worthwhile to consider strategies
used in classical molecular simulations to provide inspiration
for MLIP models designed for long-range polarizable systems.
A frequently applied empirical model that is based on a
multipole expansion is the AMOEBA force field, where
permanent atomic multipoles (up to the quadrupole) and
polarizable dipoles are used to calculate electrostatic
interactions.100,101 Adapting this representation to an MLIP
framework could be valuable for modeling polarizable systems.
Briefly, in addition to interactions between permanent

electrostatic multipoles, AMOEBA explicitly includes many-
body polarization as
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, where α, Td‑d, μind, and E are the atomic polarizability tensors
(usually isotropic), Thole damped interaction tensors,102

induced dipoles, and the polarization electric field at each
site, respectively.

An important application where polarization effects can
dictate system properties is the so-called machine learning/
molecular mechanics (ML/MM) method (e.g., refs 103−105),
which is related to the quantum mechanics/molecular
mechanics (QM/MM) approach presented in a landmark
work by Warshel and Levitt.106 For an example of ML/MM,
Inizan et al. recently applied ANI MLIPs to calculate
chemically accurate solute−solute interactions, whereas
solute−solvent and solvent−solvent interactions were simu-
lated with AMEOBA.107 In ML/MM, inference is affected by
the electric field induced by the molecular mechanics region,
and therefore, training beyond unperturbed gas-phase QM
data is required in the absence of explicit long-range features.
The challenge can compound when mutual polarization is
considered; i.e., the MM components are described using a
classical polarizable force field, such as AMOEBA.108 The
difficulty of simulating these systems may eventually be
overcome by methods using only MLIPs with high-fidelity
long-range electrostatics/polarization, i.e., ultimately replacing
the MM region, need for embedding schemes, and complicated
Hamiltonian formulations. A strategy to perform ML/MM
simulations for highly polar systems with a mechanical
embedding scheme is to train an MLIP model to infer atomic
contributions to the multipole moments. As an example,
reports by Poplier and co-workers have demonstrated the use
of data-driven techniques,109−111 particularly Gaussian process
regression, to infer atomic electrostatic moments derived in the
framework of the quantum theory of atoms-in-molecules.112

The challenge of developing MLIPs with accurate polarization
and electrostatic multipoles is ongoing, but a number of works
are starting to address these issues.70,113−115

5. OUTLOOK AND CONCLUDING REMARKS
MLIPs are reaching a mature status, and their use in molecular
simulations is becoming a frequented method in the computa-
tional chemist’s toolbox. This Perspective highlighted specific
models and methods that are expanding the application space
of MLIPs beyond systems with structure/properties dominated
by short-range physics and chemistry. We emphasized that the
approximation of atomic interaction locality can constrain the
variety of systems an MLIP can simulate. To overcome this,
models that capture interactions and environment changes
beyond an atom’s immediate vicinity have been reported,
indicating that MLIP-driven simulations for bulk, biological,
and material systems are emerging areas.

Debatably, the bottleneck to increasing MLIP capabilities is
the accumulation of reference data for training, instead of
limitations resulting from the underlying model architecture. It
is currently unclear the amount and diversity of system
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sampling required to train MLIPs with reliable long-range
interactions. The issue of limited data is persistent across ML
fields, and active learning is one strategy that can address this
challenge.116 In the paradigm of active learning, redundant
training practices are reduced by maximizing training data
diversity and limiting data set size such that each sample
meaningfully contributes to refining model parameters. For
instance, an active learning strategy known as query by
committee was used in producing the ANI-1x model,117 where
less than 25% of the original ANI-1 training data was needed to
achieve equal accuracy.118 Active learning strategies are key for
building the next generation of MLIPs considering that
complex models often require more training data. Moreover,
MLIP accuracy and transferability are dependent on the
composition of the reference data set. The development of
methods that minimize the training size and maximize the
value of each data point is essential to build MLIPs for
practical use. Although not reported, there is envisioned value
in systematic studies that establish “rule of thumb” design
principals119 between accuracy, MLIP architecture with long-
range interactions, and active learning strategies.

The emergence of MLIPs with nonlocal interactions creates
opportunities for insight into complex systems with exceptional
accuracy. A shift in research focus from “improving accuracy
on standard benchmarks” to performing simulations aimed at
measurable scientific progress is timely and encouraged. The
practice of judging MLIP models against each other will
continue in all likelihood; however, we advocate for these
future comparisons to occur on sets of standard benchmarks of
experimental ground truths. Unfortunately, such experimental
data sets either do not exist or are not yet widely embraced by
MLIP developers, and efforts to curate these, particularly for
noncovalent interactions, is a worthwhile pursuit. By our
assessment, the number of different MLIP models greatly
exceeds the cases in which they have been uniquely successful
for understanding a chemical or materials science challenge.
Most MLIPs have only been tested on a handful of systems in
simple trial studies, and as a consequence, the area of applied
MLIP modeling lags behind model development. Exploring
new ML methods and developing complex model architectures
are appreciable pursuits; however, it is worthwhile to
interrogate such efforts for the value they provide beyond
existing MLIPs. We emphasize that MLIPs are subject to an
adage of classical simulations: a model should be no more or
no less complex than what the application space demands. In
the context of this Perspective, the complexity involved in
treating long-range interactions should be judicious, for
example, based on rational physical and chemical knowledge.
MLIP models should be designed with treatments of
electrostatics, polarization, dispersion, and many-body effects
that coincide with relevant material or chemical phenomena
that dictate the properties or structures of interest. On one
hand, the treatment of long-range interactions in the design of
an MLIP can be intuited by the molecular simulation
practitioner: we have highlighted examples in Section 3.1
where it is possible to rationalize only using Ulocal,MLIP and
explicit dispersion correction because the condensed-phase
systems were neutral and chemically homogeneous. On the
other hand, some tasks may require using a MLIP in a bulk
phase application setting to understand its deficits and
incorporate refinements. Such cases further support the
importance of moving MLIP development beyond benchmarks
and proof-of-concept studies.

Many reports now exist where nearsighted MLIPs have been
applied to simulate large-scale systems (>107 atoms), for
example, Smith et al. for aluminum,120 Guo et al. for copper,121

and Lu et al. for water and copper.122 With the advent of
exascale computing,123 it is expected that simulations for
similar system sizes using MLIPs with long-range interactions
will soon follow. MLIP-based simulations on this scale can
yield unprecedented understanding into challenges faced
across physics, chemistry, and engineering disciplines.124

However, a remaining limitation to deploying MLIPs for
such efforts is efficient integration with software capable of
performing molecular simulations, particularly molecular
dynamics and Monte Carlo methods. Examples of MLIP
implementations into existing molecular simulation software
are the DeePMD-kit,125 AENET,126 SNAP,28 and TorchA-
NI.127 Despite these successes, there are a number of long-
range MLIP models, such as those using message passing or
Qeq, that are challenging to efficiently plug into existing
software, and further development effort is needed. There is
also appreciable optimization space available at the hardware
and algorithm levels, for example, see the works of Guo et
al.121 and Galvelis et al.128 Constructing MLIP interfaces with
simulation packages that fully leverage the power of accelerated
computing architectures is a nontrivial task. Unified effort
between MLIP development, model implementation, and
performance optimization is an ongoing need.

This year marks nearly a decade and a half of high-
dimensional MLIP research, during which models have
progressed to cover a span of short-ranged to nonlocal physics
and chemistry. Even though broadly generalizable models for
condensed matter with long-range interactions are in an
infantile state, system/species specific MLIPs are positioned to
revolutionize computational chemistry and materials science
fields. Many challenging areas remain where molecular
simulations using MLIPs with long-range interactions have
yet to experience widespread success. Condensed-phase
chemical reactions, interactions with light, and complicated
catalytic events are a few areas in the chemical sciences that
can benefit from MLIP model development. For materials
science, magnetic materials, complex behavior of defects, and
composite interfaces are modestly explored areas where MLIP
models with long-range interactions can be transformative. The
field of MLIPs has experienced rapid progression, and the
application space continues to expand. Thus, we envision
simulating systems with complex short- and long-range
behavior using accurate MLIPs will be the basis of many
future scientific breakthroughs.
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(44) Li, Q.-J.; Küçükbenli, E.; Lam, S.; Khaykovich, B.; Kaxiras, E.;
Li, J. Development of Robust Neural-Network Interatomic Potential
for Molten Salt. Cell Rep. Phys. Sci. 2021, 2 (3), 100359.

(45) Artrith, N.; Urban, A. An Implementation of Artificial Neural-
Network Potentials for Atomistic Materials Simulations: Performance
for TiO2. Comput. Mater. Sci. 2016, 114, 135−150.

(46) Hermann, J.; DiStasio, R. A.; Tkatchenko, A. First-Principles
Models for van Der Waals Interactions in Molecules and Materials:
Concepts, Theory, and Applications. Chem. Rev. 2017, 117 (6),
4714−4758.

(47) Ziegler, J. F.; Biersack, J. P. The Stopping and Range of Ions in
Matter. In Treatise on Heavy-Ion Science: Vol. 6: Astrophysics,
Chemistry, and Condensed Matter; Bromley, D. A., Ed.; Springer US:
Boston, MA, 1985; pp 93−129. DOI: 10.1007/978-1-4615-8103-
1_3.

(48) Byggmästar, J.; Hamedani, A.; Nordlund, K.; Djurabekova, F.
Machine-Learning Interatomic Potential for Radiation Damage and
Defects in Tungsten. Phys. Rev. B 2019, 100 (14), 144105.

(49) Small, P. A. Some Factors Affecting the Solubility of Polymers.
J. Appl. Chem. 1953, 3 (2), 71−80.

(50) Wagner, J. P.; Schreiner, P. R. London Dispersion in Molecular
Chemistry�Reconsidering Steric Effects. Angew. Chem. 2015, 54
(42), 12274−12296.

(51) Grimme, S. Density Functional Theory with London
Dispersion Corrections. WIREs Comp. Mol. Sci. 2011, 1 (2), 211−
228.

(52) Perdew, J. P.; Yue, W. Accurate and Simple Density Functional
for the Electronic Exchange Energy: Generalized Gradient Approx-
imation. Phys. Rev. B 1986, 33 (12), 8800−8802.

(53) Morawietz, T.; Singraber, A.; Dellago, C.; Behler, J. How van
Der Waals Interactions Determine the Unique Properties of Water.
Proc. Nat. Acad. Sci. 2016, 113 (30), 8368.

(54) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and
Accurate Ab Initio Parametrization of Density Functional Dispersion
Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010,
132 (15), 154104.

(55) Caldeweyher, E.; Bannwarth, C.; Grimme, S. Extension of the
D3 Dispersion Coefficient Model. J. Chem. Phys. 2017, 147 (3),
034112.

(56) Bannwarth, C.; Ehlert, S.; Grimme, S. GFN2-XTB�An
Accurate and Broadly Parametrized Self-Consistent Tight-Binding
Quantum Chemical Method with Multipole Electrostatics and
Density-Dependent Dispersion Contributions. J. Chem. Theory
Comput. 2019, 15 (3), 1652−1671.

(57) Tkatchenko, A.; DiStasio, R. A.; Car, R.; Scheffler, M. Accurate
and Efficient Method for Many-Body van Der Waals Interactions.
Phys. Rev. Lett. 2012, 108 (23), 236402.

(58) Axilrod, B. M.; Teller, E. Interaction of the van Der Waals Type
Between Three Atoms. J. Chem. Phys. 1943, 11 (6), 299−300.

(59) Grimme, S.; Hansen, A.; Brandenburg, J. G.; Bannwarth, C.
Dispersion-Corrected Mean-Field Electronic Structure Methods.
Chem. Rev. 2016, 116 (9), 5105−5154.

(60) Deringer, V. L.; Caro, M. A.; Csányi, G. A General-Purpose
Machine-Learning Force Field for Bulk and Nanostructured
Phosphorus. Nat. Commun. 2020, 11 (1), 5461.

(61) Wen, M.; Tadmor, E. B. Hybrid Neural Network Potential for
Multilayer Graphene. Phys. Rev. B 2019, 100 (19), 195419.

(62) Muhli, H.; Chen, X.; Bartók, A. P.; Hernández-León, P.;
Csányi, G.; Ala-Nissila, T.; Caro, M. A. Machine Learning Force
Fields Based on Local Parametrization of Dispersion Interactions:
Application to the Phase Diagram of C60. Phys. Rev. B 2021, 104 (5),
54106.

(63) Tkatchenko, A.; Scheffler, M. Accurate Molecular van Der
Waals Interactions from Ground-State Electron Density and Free-
Atom Reference Data. Phys. Rev. Lett. 2009, 102 (7), 73005.

The Journal of Physical Chemistry A pubs.acs.org/JPCA Perspective

https://doi.org/10.1021/acs.jpca.2c06778
J. Phys. Chem. A 2023, 127, 2417−2431

2429

https://doi.org/10.1146/annurev-physchem-042018-052331
https://doi.org/10.1146/annurev-physchem-042018-052331
https://doi.org/10.1002/qua.24890
https://doi.org/10.1002/qua.24890
https://doi.org/10.1103/PhysRevLett.98.146401
https://doi.org/10.1103/PhysRevLett.98.146401
https://doi.org/10.1039/C6SC05720A
https://doi.org/10.1039/C6SC05720A
https://doi.org/10.1039/C6SC05720A
https://doi.org/10.1103/PhysRevLett.125.166001
https://doi.org/10.1103/PhysRevLett.125.166001
https://doi.org/10.1063/1.5090481
https://doi.org/10.1063/1.5090481
https://doi.org/10.1063/1.3553717
https://doi.org/10.1063/1.3553717
https://doi.org/10.1016/j.jcp.2014.12.018
https://doi.org/10.1016/j.jcp.2014.12.018
https://doi.org/10.1103/PhysRevB.87.184115
https://doi.org/10.1103/PhysRevB.87.184115
https://doi.org/10.1137/15M1054183
https://doi.org/10.1137/15M1054183
https://doi.org/10.1063/5.0031215
https://doi.org/10.1063/5.0031215
https://doi.org/10.1103/PhysRevLett.104.136403
https://doi.org/10.1103/PhysRevLett.104.136403
https://doi.org/10.1103/PhysRevLett.104.136403
https://doi.org/10.3390/condmat6010009
https://doi.org/10.3390/condmat6010009
https://doi.org/10.1126/science.aab0530
https://doi.org/10.1126/science.aab0530
https://doi.org/10.1021/acs.chemrev.7b00305?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.7b00305?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/natrevmats.2016.24
https://doi.org/10.1038/natrevmats.2016.24
https://doi.org/10.1063/5.0067565
https://doi.org/10.1063/5.0067565
https://doi.org/10.1063/5.0011521
https://doi.org/10.1063/5.0011521
https://doi.org/10.1126/science.aae0509
https://doi.org/10.1126/science.aae0509
https://doi.org/10.1063/1.5128375
https://doi.org/10.1063/1.5128375
https://doi.org/10.1063/1.4997242
https://doi.org/10.1063/1.4997242
https://doi.org/10.1063/1.4997242
https://doi.org/10.1021/nl5005674?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/nl5005674?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/nl5005674?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.xcrp.2021.100359
https://doi.org/10.1016/j.xcrp.2021.100359
https://doi.org/10.1016/j.commatsci.2015.11.047
https://doi.org/10.1016/j.commatsci.2015.11.047
https://doi.org/10.1016/j.commatsci.2015.11.047
https://doi.org/10.1021/acs.chemrev.6b00446?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.6b00446?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.6b00446?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1007/978-1-4615-8103-1_3
https://doi.org/10.1007/978-1-4615-8103-1_3
https://doi.org/10.1007/978-1-4615-8103-1_3?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1007/978-1-4615-8103-1_3?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1103/PhysRevB.100.144105
https://doi.org/10.1103/PhysRevB.100.144105
https://doi.org/10.1002/jctb.5010030205
https://doi.org/10.1002/anie.201503476
https://doi.org/10.1002/anie.201503476
https://doi.org/10.1002/wcms.30
https://doi.org/10.1002/wcms.30
https://doi.org/10.1103/PhysRevB.33.8800
https://doi.org/10.1103/PhysRevB.33.8800
https://doi.org/10.1103/PhysRevB.33.8800
https://doi.org/10.1073/pnas.1602375113
https://doi.org/10.1073/pnas.1602375113
https://doi.org/10.1063/1.3382344
https://doi.org/10.1063/1.3382344
https://doi.org/10.1063/1.3382344
https://doi.org/10.1063/1.4993215
https://doi.org/10.1063/1.4993215
https://doi.org/10.1021/acs.jctc.8b01176?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.8b01176?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.8b01176?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.8b01176?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1103/PhysRevLett.108.236402
https://doi.org/10.1103/PhysRevLett.108.236402
https://doi.org/10.1063/1.1723844
https://doi.org/10.1063/1.1723844
https://doi.org/10.1021/acs.chemrev.5b00533?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41467-020-19168-z
https://doi.org/10.1038/s41467-020-19168-z
https://doi.org/10.1038/s41467-020-19168-z
https://doi.org/10.1103/PhysRevB.100.195419
https://doi.org/10.1103/PhysRevB.100.195419
https://doi.org/10.1103/PhysRevB.104.054106
https://doi.org/10.1103/PhysRevB.104.054106
https://doi.org/10.1103/PhysRevB.104.054106
https://doi.org/10.1103/PhysRevLett.102.073005
https://doi.org/10.1103/PhysRevLett.102.073005
https://doi.org/10.1103/PhysRevLett.102.073005
pubs.acs.org/JPCA?ref=pdf
https://doi.org/10.1021/acs.jpca.2c06778?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(64) Bayly, C. I.; Cieplak, P.; Cornell, W.; Kollman, P. A. A Well-
Behaved Electrostatic Potential Based Method Using Charge
Restraints for Deriving Atomic Charges: The RESP Model. J. Phys.
Chem. 1993, 97 (40), 10269−10280.

(65) Hirshfeld, F. L. Bonded-Atom Fragments for Describing
Molecular Charge Densities. Theor. Chim. Acta 1977, 44 (2), 129−
138.

(66) Marenich, A. v; Jerome, S. v; Cramer, C. J.; Truhlar, D. G.
Charge Model 5: An Extension of Hirshfeld Population Analysis for
the Accurate Description of Molecular Interactions in Gaseous and
Condensed Phases. J. Chem. Theory Comput. 2012, 8 (2), 527−541.

(67) Verstraelen, T.; Pauwels, E.; de Proft, F.; van Speybroeck, V.;
Geerlings, P.; Waroquier, M. Assessment of Atomic Charge Models
for Gas-Phase Computations on Polypeptides. J. Chem. Theory
Comput. 2012, 8 (2), 661−676.

(68) Deng, Z.; Chen, C.; Li, X.-G.; Ong, S. P. An Electrostatic
Spectral Neighbor Analysis Potential for Lithium Nitride. NPJ.
Comput. Mater. 2019, 5 (1), 75.

(69) Unke, O. T.; Meuwly, M. PhysNet: A Neural Network for
Predicting Energies, Forces, Dipole Moments, and Partial Charges. J.
Chem. Theory Comput. 2019, 15 (6), 3678−3693.

(70) Sifain, A. E.; Lubbers, N.; Nebgen, B. T.; Smith, J. S.; Lokhov,
A. Y.; Isayev, O.; Roitberg, A. E.; Barros, K.; Tretiak, S. Discovering a
Transferable Charge Assignment Model Using Machine Learning. J.
Phys. Chem. Lett. 2018, 9 (16), 4495−4501.

(71) Morawietz, T.; Behler, J. A Density-Functional Theory-Based
Neural Network Potential for Water Clusters Including van Der Waals
Corrections. J. Phys. Chem. A 2013, 117 (32), 7356−7366.

(72) Artrith, N.; Morawietz, T.; Behler, J. High-Dimensional Neural-
Network Potentials for Multicomponent Systems: Applications to
Zinc Oxide. Phys. Rev. B 2011, 83 (15), 153101.

(73) Zhang, L.; Chen, M.; Wu, X.; Wang, H.; E, W.; Car, R. Deep
Neural Network for the Dielectric Response of Insulators. Phys. Rev. B
2020, 102 (4), 41121.

(74) Zhang, L.; Wang, H.; Muniz, M. C.; Panagiotopoulos, A. Z.;
Car, R.; E, W. A Deep Potential Model with Long-Range Electrostatic
Interactions 2022, 156 (12), 124107.

(75) Marzari, N.; Mostofi, A. A.; Yates, J. R.; Souza, I.; Vanderbilt,
D. Maximally Localized Wannier Functions: Theory and Applications.
Rev. Mod. Phys. 2012, 84 (4), 1419−1475.

(76) Gao, A.; Remsing, R. C. Self-Consistent Determination of
Long-Range Electrostatics in Neural Network Potentials. Nat.
Commun. 2022, 13 (1), 1572.

(77) Xie, X.; Persson, K. A.; Small, D. W. Incorporating Electronic
Information into Machine Learning Potential Energy Surfaces via
Approaching the Ground-State Electronic Energy as a Function of
Atom-Based Electronic Populations. J. Chem. Theory Comput. 2020,
16 (7), 4256−4270.

(78) Kaduk, B.; Kowalczyk, T.; van Voorhis, T. Constrained Density
Functional Theory. Chem. Rev. 2012, 112 (1), 321−370.

(79) Kingma, D. P.; Ba, J. Adam: A Method for Stochastic
Optimization. arXiv preprint 2014 DOI: 10.48550/arXiv.1412.6980

(80) Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; Dahl, G.
E. Neural Message Passing for Quantum Chemistry. In Proceedings of
the 34th International Conference on Machine Learning; Precup, D.;
Teh, Y. W., Eds.; Proceedings of Machine Learning Research, 2017;
Vol. 70, pp 1263−1272.

(81) Zubatyuk, R.; Smith, J. S.; Leszczynski, J.; Isayev, O. Accurate
and Transferable Multitask Prediction of Chemical Properties with an
Atoms-in-Molecules Neural Network. Sci. Adv. 2019, 5 (8),
No. eaav6490.
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