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Perspective

Introduction

The field of quantitative structure-activity relationship (QSAR)
modelling — in which a quantitative description of a chemical struc-
tureis correlated withits biological activity or other types of chemical
properties (Box 1) — can be traced back to a seminal publication by
Hansch et al. in 1962 (ref. 1). Since then, the field has progressed with
the substantial expansion of biological and chemical dataand concur-
rent use of increasingly more complex machine learning algorithms
for model development®. Additionally, QSAR modelling concepts have
proliferated across multiple areas of data-rich research, including drug
design, health care, materials science and education®.

Asthessize and complexity of datasetsinall areas of research have
grown, deep learning has emerged as a type of machine learning that
canrecognize complex patternsin big data and rationalize them to pro-
duce accurate predictions. The origin of modern deep learning dates
back to the mid-1960s, when the foundational book by Ivakhnenko
and Lapa* was published. However, applications of deep learning in
areas such asimage recognition and natural language processing have
progressed especially rapidly in the past decade, in parallel with large
increases in computational power, methodological advances and the
expansion of data. Theinitial application of deep learning in QSAR mod-
ellingwasinthe Merck Molecular Activity Challenge hosted by Kaggle
in 2012. Entrants were asked to build QSAR models using numerical
descriptors generated from the chemical structures of compoundsina
training set with known biological activities, and models were assessed
by their abilities to predict the biological activities of compounds out-
side the training set. This has been followed by multiple contributions
in a burgeoning area of research we now call deep QSAR, with more
than 200 publications since the first paper describing the use of deep
learning in QSAR was published in 2015 (ref. 5).

In this Perspective, marking both the sixtieth anniversary of the
overall QSAR field and the tenth anniversary of the introduction of
deeplearningapproachesin QSAR modelling, we summarize ongoing
developmentsthat have catalysed and enabled the emergence of deep
QSARmodelling and the application of these modelsin virtual screen-
ing of greatly expanded chemical space. These developmentsinclude
advancesinartificial intelligence, especially deep learning®®, the rapid
growth of molecular databases (Box 2) and anew generation of molecu-
lar representations based on embeddings of both conventional linear
notations, such as SMILES, and chemical graphs (Box 3).

After briefly overviewing the fundamentals of deep QSAR model-
ling, we focus on the latest advances that are particularly relevant to the
discovery of small-molecule drug candidates. We discuss deep QSAR in
generative molecular design and highlight the potential for integrating
QSAR models usedin generative design with deep learning models for
synthesis planning and experimental chemistry into closed-circle, fully
automated drugdiscovery platforms. We then describe approaches for
virtual screening using deep QSAR models, which could help harness
therecentgrowthin the size of explicitly enumerated chemical librar-
iesavailable for virtual screening (Box 2). We predominantly highlight
unique developments and applications in QSAR modelling that have
been enabled or catalysed by the emergence and application of deep
learning methods. Traditionally important areas of drug discovery and
development, such as physical property prediction and modelling of
absorption, distribution, metabolism, excretion and toxicity character-
istics, canalso benefit from deep QSAR modelling but are not reviewed
here, as such a discussion would expand but not enrich the intended
scope of the article. Similarly, dramatic improvements in hardware,
suchasgraphics processing units (GPUs), are also supporting advances

in deep QSAR but are not covered here as these issues were reviewed
recently elsewhere’. Finally, we highlight emerging trends in the field,
including the need and potential for open-source and democratization
initiatives in computer-aided drug design (CADD) and the potential
for quantum computing to dramatically accelerate the processing of
ultra-large data sets for challenging tasks such as the use of machine
learning-accelerated quantum mechanical calculations to improve
ligand scoring accuracy in molecular docking.

Fundamentals of deep QSAR modelling

Conventional cheminformatics tasks such as QSAR modelling (Box1) or
chemical similarity searching rely on molecular descriptors designed
to numerically characterize molecular structures at different levels
of structure representation, from 1D to 3D, or even 4D (Fig. 1). How-
ever, the adaptation of deep learning to chemical data sets requires
novel types of molecular representation, where descriptor engineer-
ing (which involves generation and selection of the most informative
numerical molecular descriptors) isreplaced by molecular embeddings
(where molecules are represented by vectors in artificially created
high-dimensional spaces that are employed in learning tasks using
neural network architectures) (Fig.1). Notably, commonmachine learn-
ingapproaches use conventional chemical descriptors computed from
chemical structures based on defined formulas (Box 1) prior to model
development. Conversely, deep learning models can employ molecu-
lar embeddings created from standard chemical input data, such as
molecular SMILES or chemical graphs, that can be modified as part
ofthelearning process to achieve the most accurate prediction of the
property of interest’ (Fig. 1). Thus, these approaches generally learn
feature vectors corresponding to a molecule or an atom through the
training of a deep learning model on a specific task.

Thus, unlike traditional QSAR modelling (Box 1), chemical struc-
ture embedding (which could be viewed as a process analogous to
chemical descriptor calculation in traditional cheminformatics) and
learning using this representation are inseparable components of
the model optimization process. Ultimately, practitioners have to
decide which model architecture is best suited to the task at hand.
Models can be designed heuristically based on human experience or
semi-automatically with an evolutionary algorithm", neural architec-
ture search or meta-learning'. Arecent study suggested” pre-training
a deep learning model with one million unlabelled molecules from
ChEMBL to learn the representations, followed by model fine-tuning
for various downstream quantitative structure—property relationship
or QSAR tasks.

Animportant advantage of deep QSAR methods over traditional
QSARmethodsisthatthey may more effectively address multi-objective
optimization tasks by using knowledge transfer, where, in practical
terms, concurrent use of different data available for different tasks
helpsimprove prediction accuracy for each task'. However, it has been
shown that modelimprovement over respective single-task QSAR mod-
elsisnotalways assured: better or worse performance can be obtained
depending on the level of correlation between activities against indi-
vidual targets™. Recent studies have suggested additional methodo-
logical advances toimprove the accuracy of deep QSAR applicationto
multi-objective learning®.

Traditional areas of concern for QSAR modelling, such as data
curation, model applicability domains and independent model vali-
dation, remain key areas for consideration when building deep QSAR
models. Methods for chemical and biological data curation that com-
bine automaticand manual efforts have been extensively described'* 8,
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Box 1

An introduction to QSAR modelling in drug discovery

QSAR modelling was originally introduced as a computational tool to
relate molecular properties (such as dipole moment or hydrophobicity)
to bioactivities measured for small congeneric series of compounds.
It has since evolved in terms of the complexity of both molecular
characterization and statistical or machine learning approaches
used to build models as well as in the size and chemical diversity of
the data sets used for model development (reviewed in ref. 25).

QSAR modelling has progressed to become one of the major
tools in computer-assisted drug discovery, and key principles
and best practices of QSAR modelling have also found multiple
applications in other areas of chemistry, materials science and
beyond (see ref. 3 for a recent review). In addition to the prediction
of bioactivity of compounds, QSAR methods have been employed
widely in the prediction of multiple physicochemical properties,
such as aqueous solubility, melting point and pK,, that are routinely
considered by medicinal chemists. QSAR approaches have also been
employed in the calculation of biological properties of compounds
other than target bioactivity such as various absorption, distribution,
metabolism, excretion and toxicity end points of critical importance
in drug development.

As we emphasize in this Perspective, the accumulation of big data
on chemical bioactivity for large numbers of molecular targets has
created a need to accelerate different types of chemical computing
used in both ligand-based and protein structure-based drug discovery.
These challenges have led to the proliferation of QSAR approaches
(recently enhanced by deep learning methods) to areas that historically
have not employed statistical modelling methods such as quantum
chemistry and molecular docking.

Modern QSAR approaches can be generally described as an
application of statistical and machine learning techniques to finding
empirical relationships of the form A,=I2 (D, Dy,..., D), where A; are
biological activities (or other properties of interest) of molecules,

D, D,,..., D, are calculated (or, sometimes, experimentally measured)

but the large size of the data sets to which deep QSAR methods are or
could be applied means there is now aneed for methods that can effec-
tively address data curation at scale as manual curationis not feasible.
Reflecting on this need, automated workflows are being developed to
process both training and external data sets, such as those availablein
KNIME, to ensure the trustworthiness of models"”.

Similarly, deep QSAR models require rigorous external validation.
This critical aspect of QSAR model development has been extensively
discussed in the literature, and rigorous model validation workflows
have been developed®*°. These workflows can be employed when build-
ing deep QSAR models for big data sets, but their execution requires
significant computational resources. Furthermore, with the substantial
expansion of external virtual screening sets used toidentify novel active
compounds, assessing the applicability domain of deep QSAR models
(thatis, whether external data are within or out of the distribution of
the training data set) also becomes more challenging.

Recent studies have expanded the original concept of modela-
bility?, which was introduced to explain the low accuracy of QSAR

structural properties (known as molecular descriptors) of compounds,
and k is some empirically established mathematical transformation
that should be applied to the descriptors to calculate the property
values for all molecules for which the relationship holds.

Depending on how molecular structure is characterized, QSAR
models have been classified as 1D, 2D, 3D or even higher levels (Fig. 1).
Examples of 1D descriptors include molecular weight, counts of
atom types, counts of hydrogen bond donors or acceptors, number
of rings, or number of specific functional groups. Descriptors in the
2D category include multiple molecular indices calculated from
molecular graphs. 3D descriptors are calculated from the knowledge
of molecular geometry (for instance, polar surface area or 3D atom
pairs) and 4D descriptors are calculated for multiple molecular con-
formations arising from conformational search or molecular dynamics
simulations.

With the development of multiple types of molecular descriptors,
increasingly more complex machine learning and descriptor sampling
approaches (k-nearest neighbour, support vector machines, random
forest, artificial neural networks and others) have been introduced
with prominent use in QSAR modelling. As the complexity of both
data and methods has increased, QSAR modelling has gradually
transitioned from a simple statistical tool related to concepts in
physical organic chemistry to an application of multivariate statistical
modelling of data in chemical and materials sciences. Thus, it is not
surprising that deep learning methods are increasingly being applied
in QSAR modelling.

As we discuss methods and applications of deep QSAR, it is
important to recognize that the best practices of model development
and validation established in the field and summarized in several
key publications®'®?° remain valid. These key principles include the
importance of chemical and biological data curation, which can be
accomplished using respective workflows'"”, as well as rigorous
model validation protocols®.

models for data sets with a large fraction of “activity cliffs”* (pairs of
compounds with the highest mutual similarity but different activity
classes). This concept was recently expanded by introducing the rough-
ness of molecular property landscapes?®, and the argument was made
that estimating the roughness couldimprove the extrapolative accuracy
of QSARmodels. Recent studies have also emphasized theimportance of
addressing prediction confidence, in addition to traditional objectives
of predicting the activity class or value for external compounds. For
instance, Bosc et al.* advocated for the use of conformal prediction
methodsto provideinformation onthe certainty of predictions. As both
chemical bioactivity data sets and virtual screening libraries continue
to grow, rigorous assessment of chemical distribution and prediction
certainty should be arequisite part of any deep QSAR modelling study.

Deep QSAR and generative modelling

Generative molecular design

One traditional use of QSAR models is the virtual screening of chemical
databasestoidentify molecules of interest that can be purchased and
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Box 2

Expansion of searchable chemical space

Advances in click chemistry, robotics, synthesis automation and
computational planning have led to exponential growth in the sizes
of chemical databases in recent years.

One of the most popular databases for sourcing molecules for
virtual screening is ZINC. In 20086, this database contained less than
a million molecules, but the most recent ZINC22 version has grown
to over 37 billion unique chemical entries — a >50,000-fold increase,
with the most dramatic growth in the last 2 years (see figure)'™.

Commercial libraries such as WuXi AppTec or CHEMriya by
OTAVA have also grown rapidly. The commonly used Enamine REAL
database currently offers up to 5.5 billion unique compounds for
order, while the Enamine REAL Space on-demand library can be
expanded into ~38 billion entities (when isomers are considered).
Similarly, the SAVI database encompasses 1.75 billion chemicals
that have been generated by applying 53 chemical transformations
to 150,000 Enamine building blocks®*. There is also a growing
number of knowledge-based collections, including BioSolvelT
KnowledgeSpace, which describes the chemical space of hundreds
of billions of structures with a plausible synthetic feasibility.

Recently, a comprehensive collection of 4.2 billion molecules
has been aggregated from 23 different sources in an effort to find
direct antivirals against SARS-CoV-2 (ref. 153). Many (if not all)
pharmaceutical companies have created their own proprietary
ultra-large chemical databases, for example, PLC by Eli Lilly, PGVL
by Pfizer and XXL collections by GlaxoSmithKline™*.

Further expansion of accessible chemical space could be
already projected into trillions of entities. Ruddigkeit et al. generated
166.4 billion virtual molecules containing up to 17 atoms restricted

tested (reviewed inref. 25). However, progress in medicinal chemis-
try requires the discovery of new chemical entities. Generating new
molecules from scratch (de novo) involves construction, scoring and
optimization® of molecular structures and advances in these tasks
haverecently been achieved using deep QSAR coupled with generative
chemistry”.

Methods employed for de novo molecular design include
rule-based and rule-free approaches®?*’, both of which have been shown
toidentify new bioactive compounds that are also synthetically acces-
sible (seeref. 30 for areview). Rule-based methods use sets of molecular
building blocks and chemical transformations such as virtual reaction
schemes for structure generation®. In contrast, rule-free ‘generative’
(or‘constructive’) deep learning methods®’ sample new molecules from
alearned statistical distribution of the training data (‘latent space’),
without explicitly representing their molecular structure in chemical
terms, and this molecular design processis difficult (if not impossible)
to describe in a way that can be easily interpreted.

Many generative drug design approaches have been built on deep
neural networks (Fig.2a-d). The most prominent methods are chemical
language models® thatemploy textual representation of molecules by
SMILES strings to learntheintrinsic grammar of the strings and generate
new strings corresponding to novel realistic molecules. The majority of
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@ 220,000,000
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to basic chemical elements (C, N, O, S and halogens) that could be
made by following simple synthetic rules™®. Other virtual databases
such as eXplore from eMolecules and MolDB from DeepCure already
include trillions of hypothetical entries, with the latter collection
already aiming at expanding to 10" synthesizable compounds
constructed by generative models.

the chemicallanguage models reportedintheliterature have employed
recurrent neural networks with long short-term memory**, variational
autoencoders® and generative adversarial networks®, and graph neural
networks®” have also been used tolearnand generate molecular graphs.
Several other deep learning architectures have been proposed for
this purpose, including hybrid approaches combining rule-based and
rule-free networks™. Arecentreview provides agood summary of neural
network architectures used in generative chemical language models®.
All of the methods considered above typically sample new mol-
eculesfromalatent representation of molecular structure learned by
the neural network during model training; that is, they act as statisti-
cal structure generators. At some point during or after the molecule
construction process, the proposed designs are evaluated and pri-
oritized according to the desired function; that is, their biological
activity and/or other properties. Notably, it has also recently been
demonstrated that the inverse strategy — generating molecules with
desired propertiesthatare decoded froma particular area of the latent
descriptor space — can be successfully pursued using a type of deep
learning method called a conditional recurrent neural network*’.
Virtual assessment of the target property of the generated mol-
eculesis the most critical and error-prone part of the design process.
Scoring of new molecules canbe performed in several ways (Fig. 2e,f).

Nature Reviews Drug Discovery


https://www.wuxiapptec.com/
https://chemriya.com/
https://enamine.net/compound-collections/real-compounds/real-database
https://enamine.net/compound-collections/real-compounds/real-database
https://enamine.net/compound-collections/real-compounds/real-space-navigator
https://www.biosolveit.de/infiniSee/#knowledgespace
https://www.biosolveit.de/infiniSee/#knowledgespace
https://www.biosolveit.de/2022/09/12/introducing-explore-trillion-sized-chemical-space-by-emolecules/
https://deepcure.ai/technology/

Perspective

These include using an external QSAR model or enriching the train-
ing data with reference molecules that have the desired activity*,
iteratively adapting the parameters of the generative model to
preferentially construct molecules with the desired properties (for
example, by one-shot or few-shot learning®, transfer learning®, or
reinforcement learning”), or directly by using the probabilities learned
by the generative model as the evaluation criterion**. Depending on
the nature of the machine learning algorithm employed for adap-
tive model optimization, this criterion is sometimes referred to as
‘reward’ or ‘fitness’.

Generative drug design with deep QSAR models

Chemical language models combined with external scoring seem to
currently dominate the field of generative chemistry, possibly owing
to theavailability of the respective software tools* ™. Thus, deep QSAR
models that are built to assess molecular bioactivity have recently
been combined with chemical language models, either as separate
external tools to rank the generated molecules by their activity or as
model-intrinsic scoring functions to guide chemical structure gen-
eration towards molecules with the desired properties®**. Studies
that also include experimental validation of compounds proposed
by generative molecular design methods are still scarce but are
beginning to emerge*®. For instance, compound 1 (Fig. 2f) is a new
receptor-related orphan receptor gamma (RORYy) inverse agonist
(IC5,370 nM), which emerged as atop-scoring design based on asam-
pling probability estimate**. This beam-search approach eliminates the
strict need for an explicit QSAR model by relying onthe learned statisti-
caldistribution of the training data, whichincluded known RORy modu-
lators. Additional examples of experimentally bioactive compounds
designed de novo using generative chemical language approaches
have been discussed in a recent review’’; these include a dual modu-
lator of the retinoid X and peroxisome proliferator-activated recep-
tors and an inhibitor of Moloney murine leukaemia virus kinase 1and
cyclin-dependent kinase 4.

As discussed above, similar to conventional QSAR models, deep
QSAR models suffer from a decrease in performance and accuracy
when applied to poorly curated data, when they lack appropriate vali-
dation or when applied to out-of-domain data. Toincrease confidence
in bioactivity predictions, model ensembles can be used, combining
the predictions with a majority voting approach®. Ina recent study*’,
anensemble of 100 deep QSAR models was trained with the ELECTRA
(Efficiently Learning an Encoder that Classifies Token Replacements
Accurately) algorithm. Each model predicted phosphoinositide
3-kinase-y (PI3Ky) inhibition with a slightly different performance.
Testing of asubset of the computer-generated compounds showed that
the differenceinvotes (0 to 100) for each de novo-generated molecule
was approximately, though not perfectly, reflected in their dissociation
constants. The top-scoring compound, compound 2 (Fig. 2f), potently
inhibited the intended target PI3Ky (K; 63 nM).

Computational models can suggest potential new drug candidates
to medicinal chemists within seconds to hours; therefore, synthe-
sizing chemicals for subsequent experimental evaluation remains a
time-limiting step at this pointin the process. The rapid development
of robotic platforms for drug and materials design has stimulated the
creation of efficient cheminformatics tools for planning and guiding
organicsynthesis. These tools aim to assess the synthetic accessibility
ofacompound and suggest feasible synthetic routes between available
starting materials and the target molecule, and are discussed in the
following section.

Deep learning in synthesis planning

Two strategies are conventionally used to determine a series of reaction
steps thatlead to a given compound from available starting materials:
forward synthesis (starting from a collection of building blocks), and
backward synthesis or retrosynthesis (starting fromthe target molecule
and searching for putative precursors and the respective reactions®?).
Generally, a synthetic route contains several one-step reactions for
which major products, yield and, ideally, the reaction rate should be
assessed. For a given elementary step, reaction conditions (solvent,
catalyst, temperature and so on) leading to areasonable yield should
be suggested.

Computer-assisted synthesis planning has long been an impor-
tant area of research, starting from seminal contributions by Corey*’.
Machine learning methods have been progressively broughtinto this
field, as extensively discussed in arecent review’*. Asinmany other dis-
ciplines, the growth of information on chemical reactions and the devel-
opment of large reaction databases stimulated the emergent use of

Box 3

Molecular cartography

The rapid growth of modern chemical databases requires special
tools to analyse and visualize this information. In this context,
molecular cartography or chemography can be particularly

useful. Chemography employs multidimensional scaling methods
to project compounds in chemical libraries represented by
multiple molecular descriptors (chemical space) onto a 2D map™®.
Chemical space visualization has been an important component of
cheminformatics research for many years™’; however, deep learning
approaches brought innovation and acceleration into this area of
cheminformatics to enable the visualization of modern ultra-large
chemical libraries.

One such recent method — generative topographic mapping
(GTM) — allows both compound positions on a map and the data
probability distribution function to be obtained, which, in turn,
makes it possible to describe (ultra)large compound collections.
GTM can be used efficiently for various cheminformatics tasks'**-"®°,
including chemical data visualization and analysis, prediction of
properties or biological activities, comparison of large chemical
libraries, drug repurposing, and virtual screening. Related options
are implemented in the polyfunctional ChemSpace Atlas tool'®',
which includes >40,000 hierarchically related maps accommodating
several billion compounds.

In combination with SMILES-based or graph-based autoencoders,
chemography can be used for automatized generation of chemical
structures with desired biological activities, which is an emerging
area of cheminformatics. It has been demonstrated that GTM con-
structed on the autoencoder latent variables provides direct and
intuitive access to the autoencoder chemical space. Sampling of this
space can be ‘driven’ by the map towards the highly relevant zones
of a drug discovery project'®. This approach can also be extended
to chemical reactions where, for instance, a cartography-enhanced
artificial intelligence tool enabled the discovery of several new types
of Suzuki coupling reaction’®®.
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Fig.1| Contrasting traditional and deep QSAR models. Both approaches
employ similarinput data representing moleculesin 1D to 4D. However,
traditional QSAR methods (shown on the left) require calculation of explicit
numerical descriptors from the respective molecular representations that are
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used for various machine learning tasks (that is, descriptor calculations and
machine learning are separated), whereas deep QSAR approaches (shown on the
right) learn molecular representations as part of model optimization conducted
inthe latent chemical space.

Deep learning

deep learning methods in computer-assisted chemical synthesis plan-
ning. In their seminal studies, Segler et al.*>*° reported deep neural net-
work models that assess the probabilities of different transformations,
which, incombination with symbolicartificial intelligence methods and
the Monte Carlo Tree Search, led to the selection of the most feasible
reaction pathways. Two alternative methods — template-based meth-
odsand template-free methods®* — were applied both to retrosynthesis
and to outcome prediction.

In template-based methods for retrosynthesis, the templates
(transformation rules) can either be suggested by expert chemists or
extracted automatically fromreaction databases. Retrosynthetic trans-
formation rules provided by expert chemists were used in LHASA, the
first expertsystemfor organic synthesis planning, which was developed
around 50 years ago by Corey and Wipke®. This concept has now been
achieved in several retrosynthetic tools, including the popular CHE-
MATICA (also known as SYNTHIA) programme®, which integrates more
than 50,000 mechanism-based transformation rules deduced manually
from the experience of organic chemists. The main trendis currently the
automatic extraction of transformation rules (patterns) from chemical
reaction databases. Such anapproachwasinitially used by Segler et al.”,
anditwas also implemented in the popular AiZynthFinder tool*.

Alternatively, in template-free methods for retrosynthetic route
planning, relationships between structures of reactants and products
of chemical reactions are deduced directly. Thus, Jin et al.*’ used a
graph-convolutional neural network withaglobal attention mechanism
to predict pairs of atoms belonging to the reaction centre. Another
template-free method, sequence-to-sequence learning, is based on
natural language processing and is widely used in text translation®’.
In the case of chemical reactions, SMILES strings of the reactants
and the products are analogous to the initial text and its translation,
respectively. This methodology has been used for the prediction of
retrosynthetic reaction routes® and of reaction products®.

In forward synthesis modelling, new molecules are grown in a
stepwise manner, and all possible solutions are enumerated at each

step, followed by the submission of top-scoring intermediates into a
subsequent growing step. The quality of designed productsis assessed
by the similarity to a target molecule. This way, the forward synthesis
approach can be utilized as a de novo design tool coupled with syn-
thesis prediction. One of the most productive forward synthesis tools
was developed in the Schneider group and implemented in the DOGS
programme®. Forward synthesis is also utilized to explore chemical
reaction networks originating from given building blocks® and to
generate virtual compound libraries®*®,

A synthetic accessibility score (or the opposite, a synthetic com-
plexity score) represents another important scoring metric to aid the
prioritization of virtual compounds. It can be used as a quantitative
filter for the screening of virtual libraries or de novo design. Among
different matrices of thiskind®*’, the most popular is SAscore®®, which
considers both a fragment score based on fragment occurrence in
PubChem compounds, and acomplexity penalty calculated as afunc-
tion of the number of rings, chiral centres, macrocyclic fragments and
the total number of atoms. Recently, Coley et al.*” proposed SCScore,
a synthetic complexity score that always rates products higher than
reactants.

In addition to assessing synthetic accessibility, it isimportant to
assess reaction kinetic and thermodynamic characteristics as part of
forward synthesis planning. Such predictive models can be built using
condensed graphs of reaction (CGR)”°, which combine the information
aboutallreactants and products. Fragment descriptors generated for
CGRare combined withsolvent and temperature descriptorsand then
used inthe modelling of reactionrate constants for bimolecular nucleo-
philic substitution®””, bimolecular elimination’?and different types of
cycloaddition”as well as for equilibrium constants of tautomerization
reactions’. Recently, some studies on reaction yield prediction were
also published, but the results appeared somewhat controversial as
the model quality is generally good for the sets of data collected using
high-throughput techniques™”® but quite poor for diverse reaction
data gathered from the literature sources’”’s,
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Modelling of reaction conditions has also been attemptedinrecent
studies. CGR-derived fragment descriptors were used by Marcouetal.”
toobtainclassificationmodels able to predict optimal types of solvents
and catalysts for the Michael reaction. In another study, Gao et al.*°
described neural network-based models that predict the catalyst, sol-
vent, reagent and temperature for a particular reaction, and reported
a close match (69.6%) to experimental conditions within the top-10
predictions. The likelihood ranking approach developed by Afonina
et al.®" outputs several alternative reaction conditions ranked with
the help of aneural network-based QSAR model. Lin et al.** followed the
heuristic principle: similar reactions proceed under similar conditions,
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space (represented as grey rectangles with white circles) and generate novel
compounds. See ref. 32 for a detailed discussion of these architectures.
Agenerative model (part e, blue box) is trained with sets of molecules with desired
properties, approximating the statistical distribution of the training data (grey box).
New molecules are generated by sampling from the learned distribution.
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allowing the problem of reaction condition assessment to be reduced
to a simple similarity search in reaction databases with recorded
conditions, which is especially effective with the aforementioned
CGRtechnology™.

Potential for automated compound design

Developments with machinelearning models for molecule construction
and synthesis planning have opened anintriguing opportunity for fully
automated molecular design”® in which fully robotic platforms could
make decisions concerning both the structure of the molecule to be syn-
thesized and the related synthesis plan without human intervention®.
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instance, aiming to bias the generative model towards constructing top-scoring
new molecules. Examples of molecules designed by generative models with deep
QSAR (partf). Compound 1acts as an inverse agonist of receptor-related orphan
receptor-y (RORy) and compound 2 inhibits phosphoinositide 3-kinase-y (PI3Ky).
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Importantly, suchapproaches could be naturally integrated with deep
QSARmodels, directing the synthesis of compounds with desired bio-
logical and physicochemical properties. The unique aspect of model
integration within the design, make, test, analyse cycle® is the need to
process data generated by automated chemistry on the fly and translate
model predictions into new syntheticinstructions. The obvious neces-
sity to optimize multiple objectives of automated design and synthesis of
compoundswith the desired properties, purity, yield, and bioactivities
alongwith the large volumes of data generated by such systems suggest
the growing use of deep QSAR models that particularly excel for large
data sets and multi-task optimization. Emerging prototypes of such
fully automatized systems have been reported”*%¢ (summarizedina
recent review®*). We expect that rapid improvements in the methodol-
ogy and software for artificial intelligence-driven chemical synthesis®
willopenanew era of artificial intelligence-driven synthetic chemistry
assisted by deep QSAR.

Deep QSAR in structure-based screening
Virtual screening of large molecular libraries (often in excess of
1,000,000 compounds) iscommonly used toidentify potential ligands
when suitable structural information on the protein targets is avail-
able. Typically, these computational approaches involve two steps:
docking the molecules into the binding site to achieve arealistic ‘pose’
and scoring these poses to rank virtual screening hits and to support
decision-making about whichcompoundsto test in experiments. Thus,
the common objectives of molecular docking approachesinclude the
predictionof boththe pose of the ligands and their binding scores, which
areexpected to correlate with experimentally measured binding affinity.
In traditional docking approaches, docking scores can only be
calculated following the prediction of the ligand poses; therefore,
docking and scoring of ultra-large chemical libraries comprising bil-
lions of molecules remain very challenging even with current compu-
tational power. The challenge of rapidly calculating docking scores
for ultra-large compound libraries has been addressed recently with
the emergence of an approach termed ‘deep docking™®®. As discussed
in the next section, deep docking emerged at the interface between
traditional approaches toscore calculation and deep QSAR modelling.

Progressive docking and early adaptations of active learning

In 2006, the use of QSAR modelling and active learning to predict
docking scores from computationally inexpensive chemical descrip-
tors for small-molecule compounds in a virtual screening library
was pioneered in an approach known as progressive docking®. This
approach utilized scores generated for a fraction of small molecules
selected fromavirtual screening library by docking these compounds
againstaparticular protein target of interest. Docking scores obtained
for this small set were used as a target property (in place of the tradi-
tional use of bioactivity measurements) to build a QSAR model that
was then used to estimate docking outcomes for as-yet-unprocessed
ligands and to iteratively remove entries predicted to have unfavour-
able scores from the docking database to save computational cost.
Progressive docking was tested on 90,000 molecules screened by
the docking programme Glide against a number of protein structures
available at the time, including the sex hormone-binding globulin,
carbonicanhydrase, corticosteroid-binding globulin, HIV reverse trans-
criptase and, notably, SARS-1 Main protease (MP™). For each of these
targets, protein-independent ‘inductive’ ligand descriptors’® were
used to approximate continuous Glide SP values for as-yet-undocked
compounds, while using only 10% or 20% of the database for training.

The application of the resulting linear QSAR models approximating
Glide SPscoresenabled up to2.6-fold acceleration of the virtual screen
while maintaining an up to 99% hit recovery rate®.

Published a few years later, the NNscore method introduced
non-linear QSAR modelling of docking scores®. The authors con-
structed a shallow artificial neural network consisting of 194 input
nodes corresponding to the molecular descriptors of ligands (such as
pairwise atombinding, various energy terms and the number of rotat-
able bonds) connected to a five-unit hidden layer, followed by a layer
with‘good or poor binder’ classification node. In alater study, the pos-
sibility of accurate emulation of docking scores with a conformational
predictor was proposed by Svensson et al.”>. Another methodology was
employed in theiterative approach implemented for Apache Spark”,
in which the authors proposed a strategy very similar to progressive
docking, wherein they iteratively docked sets of ligands from a large
virtual screening library to form progressively changing training sets
for model building and used the models to predict docking scores for
the remaining ligands fromthe original library to progressively exclude
low-scoring molecules and prioritize the high-scoring ones.

Accelerated docking score prediction with deep docking

While the early studies described above demonstrated an intriguing
opportunity for the prediction of computationally intensive docking
scores by computing them using simplistic ligand descriptors, the
reported twofold to fourfold acceleration in library screening is still
insufficient to deal with molecular libraries of abillion compounds or
more. Only with the emergence of deep learning methods have such
approaches become feasible. A deep docking approach making use of
deep QSAR modelling for accelerated screening of ultra-large chemical
libraries was developed in early 2020 (ref. 88) (Fig. 3).

The combination of active deep learning with simple, protein-
independent 2D fingerprint chemical descriptors makes deep dock-
ing particularly suited for virtual screening of emerging giga-sized
chemicallibraries using standard computational resources. For exam-
ple, deep docking enabled the evaluation of 1.4 billion compounds
fromthe ZINC15 database against SARS-CoV-2 MP" using only 60 CPU
cores employed for Glide docking, and 4 GPU cores for deep neural
network training®. The top 1,000 hits from the ZINC15 database (cor-
responding to 585 distinct chemical scaffolds) were disclosed, many
of which have been subsequently independently confirmed as active
compounds®. Importantly, the rapidity of the process allowed initial
results tobe published on the day the COVID-19 pandemic was declared
by the World Health Organization®®,

This original publication® was followed by a series of similar deep
docking campaigns with ultra-large chemical libraries that employed
different docking software and various linear, non-linear,and machine
learning approaches to build QSAR-like models to predict docking
scores but generally replicated the original deep docking workflow.
Theserecent studies are summarized in Table 1. The most recent exam-
ples of experimentally confirmed hits emerging from deep docking
approachesinclude micromolar inhibitors of SARS-CoV-2 MP™ (ref. 95)
and papain-like protease’® as candidate antiviral agents and Lin28
inhibitors® with potential application as anticancer agents.

Large-scale and consensus deep docking

The emergence of active deep learning approaches, such as deep
docking, has significantly reduced the computational cost of
structure-based virtual screening campaigns, making it possible
to routinely evaluate libraries composed of >1 billion compounds,
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Fig.3 | Workflow for deep docking. Deep docking uses a QSAR model trained
ondocking scores of a portion of an ultra-large docking database of molecules to
iteratively predict the docking outcomes for the remaining entries. The workflow
consists of the following major steps. The first step is model training, in which a
small fraction of a database is randomly sampled and the sampled molecules are
docked into the target of interest using any conventional protocol. A deep neural
network modelis then trained, correlating Morgan fingerprint descriptors of
compoundsin the sample set to their corresponding docking scores translated
into abinary formbased on a threshold (such as the top 1%). The next step is

Hit selection

prediction; after the model is trained, the remaining entries in the ultra-large
database get scored by the QSAR model and all ‘active’ predictions are then
considered as emulated virtual hits to be added to the training set for the next
iteration. Subsequently, in a database reduction step, all ‘inactive’ QSAR model
predictions are removed from the docking base and the workflow is repeated with
the ‘active or inactive’ threshold becoming more stringent after each iteration.
Theseiterations are repeated until convergence; that is, when the number of
retried virtual hits does not change significantly. The emulated virtual hits,
scoring favourably within all iterations, are actually docked into the target site.

such as ZINC or Enamine REAL, in their entirety, using standard com-
putational setups that are affordable to many CADD practitioners. For
instance, in a recent proof-of-principle study, the authors were able
to screen the entire ZINC15 database (1.4 billion molecules) against
12 drug targets, effectively reducing the amount of computation by
100-fold or more while recovering high-scoring molecules confirmed
by conventional docking?®.

Anintriguing emerging opportunity is the use of multiple docking
programmes to build deep docking models, which enables CADD sci-
entists torely onand, hence, incorporate various consensus protocols
into hit selection”’. The use of consensus docking has along-standing
history'®*® and is an integral part of best practices in CADD'** Fur-
thermore, the application of rigorous consensus docking protocols
toultra-large chemical libraries could enable the development of fully
automated hit-calling approaches that would not require any expert
involvement. Forexample, ahigh-throughput virtual screening pipeline
was described recently that utilized deep docking with the Glide, ICM,
FRED, GPU-AutoDock and QuickVina2 programmes, which were allused
to screen 40 billion molecules (combining ZINC15 and Enamine REAL
Space databases) against SARS-CoV-2 MP™ (ref. 95). The consecutive
deep docking runs with the five programmes took approximately 90
days of computing on 250 GPUs and 640 CPU cores and reduced the
initial 40-billion-molecule library by 1,500-fold. Importantly, the use
of 5 docking programmes, combined with ligand structural cluster-
ing and pharmacophore filtering, allowed the authors to develop and
evaluate 28 individual consensus strategies, 26 of which were fully
automated and 2 of whichinvolved final examination of generated hit
listsby a CADD expert. When up to 100 compounds were ordered and
evaluated for each of the 26 automated hit-selection protocols, some
reached hitrates of 13%, arespectable performance. Although the two
strategies involving expert examination clearly outperformed therest
by achieving hit rates of 16% and 23%, these results suggest that deep
docking strategies canalready enable fully automated virtual screening
of ultra-large chemical libraries.

While deep docking offers an exciting opportunity to accelerate
structure-based drug discovery approaches and the use of consensus
deep docking improves the results, there are several pitfalls associ-
ated with this approach that we hope will be addressed in the near
future. Most importantly, deep docking is designed to accelerate the
process of finding compounds with high docking scores, but it fully

relies on the current scoring functions used in the docking software,
andtheresultinghitselectionis predicated onthe choice of software and
respective scoring function. Thus, deep docking shares all the limi-
tations and pitfalls concerning the accuracy of the current docking
methods. As these methods improve in their accuracy, so will deep
docking. Additional improvements may be associated with a more
intelligent choice of the initial library to generate docking scores (for
instance, by using structure-based pharmacophores to select com-
pounds forinitial docking calculations) as well as with the progressin
deep learning methods.

Polypharmacology modelling with deep learning

We have already discussed above the use of deep learning in multi-
objective optimization tasks using ligand bioactivity data'". This
active area of research has recently been expanded with methods for
multi-objective modelling of docking scores in the context of poly-
pharmacology. For instance, Liu et al.’® proposed joint modelling of
docking data of new and known targets using multi-task learning and
demonstrated that such an approach outperforms both single-task
learning and active learning.

There are emerging examples of the use of deep learning to predict
protein-ligand interactions'**'%, providing opportunities for large-
scale target profiling for chemicals of interest. Kinome-wide multi-task
deep neural network models were developed by Li et al.'°° using
~140,000 data points obtained by probing a panel of 391 kinases with
small molecules. The resulting model allowed the authors to map a
comprehensive kinome interaction network encompassing a variety
of on-target and off-target effects. This tool was further developed
into an online platform, KinomeX'”, that can predict kinome-wide
polypharmacology of compounds based solely on their 2D structures
enumerated through ECFP4 fingerprints.

While experimental data are limited by nature, the use of emulated
dockingscores could, inprinciple, be constrained only by the availabil-
ity of computational resources. Moreover, the generation of docking
scores for training deep learning models would not require any prior
knowledge of a previously unstudied ‘cold’ target. For instance, the
authors of a recent study'®® implemented a reinforcement learning
approach thatuses docking scores for compounds created by agenera-
tive model for a ‘cold’ target, while starting the training process with
known ligands of homologous proteins. The authors did not augment
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Table 1| Virtual screening approaches using machine learning to predict docking scores

Method Emulated docking Ligand descriptors QSAR function Ref.
score
Deep docking Glide SP Morgan fingerprints Deep neural network 95
Quick Vina2
FRED
GPU-AutoDock
ICM
Pyzer-Knapp approach AutoDock-Vina Extended-connectivity fingerprints Bayesian optimization 138
Jastrzebski et al. approach ~ Glide XP Contact fingerprints Deep neural network 139
SMINA
MolPal AutoDock-Vina Morgan fingerprints Neural network; random forest; message 140
passing neural network
Martin approach DOCK Morgan fingerprints Linear regression 141
Lean docking GOLD Unfolded counted atom pairs fingerprints Regressor model 142
AutoDock-Vina
FRED
Glide SP
MOE
HASTEN Glide SP Morgan fingerprints Message passing neural network 143
FRED
MEMES AutoDock Extended-connectivity fingerprints; Mol2Vec Convolutional neural network; recurrent 144
descriptors; CDDDs neural network
Yang et al. approach Glide SP Morgan fingerprints; molecular graphs Graph-convolutional neural network; 145
DOCK 37 random forest
V-DOCK AutoDock-Vina 2048 RDKit fingerprints combined with 166 bits; PyTorch deep learning library 146
MACSS fingerprints
Bucinsky et al. approach AutoDock SOAP molecular descriptors; SchNet 128 bits vectors  Keras neural network; deep tensor neural 147
network; gradient-boosted trees
NeuralDock MedusaDock 36 bits atom type vectors with 7 channels for ligands; ~ TensorFlow neural network 148
10x10x10, 2-angstrom resolution images with
8 channels for protein pockets
MILCDOCK LeDock Pose-based RMSD values; metadata from docking Gradient-boosted trees; random forest; 149
PLANT programmes naive Bayes neural network
Vina
AutoDock 4
rDock
DOCKSTRING AutoDock-Vina Various fingerprints Regressions; gradient-boosted trees; 150

Gaussian processes; graph neural network

CDDD, continuous and data-driven descriptors; QSAR, quantitative structure-activity relationship; RMSD, root-mean-square deviation; SOAP, smooth overlap of atomic positions.

their training set with highly scored compounds but the transfer learn-
ing approach enabled them to find potential binders for JAK2 kinase
when only ligands for the closely related kinases JAK1, JAK3 and TYK2
were used toinitiate the generative model.

The use of deep learning methods not only allows larger parts of
achemical spacetobe processed butalso enables large-scale docking
campaigns on a much broader range of targets. This could lead to a
notableimpactonbothstructure-based and structure-free modelsin
predictive polypharmacology.

Outlook

The combination of the emergence of big data, increases in computa-
tional power and advancesin deep learning methods is driving the pro-
gressin CADD described above. Here, we highlight some of the trends
we expect to continue or to emerge in the coming years.

Expansion of accessible chemical space

Theremarkable growth of ‘make-on-demand’ chemical libraries (Box 2)
has brought unprecedented opportunities for virtual screening but
also poses tremendous challenges. Virtual screening of such ultra-large
collections by conventional molecular docking remains practically
unfeasible due to the associated costs of both software licenses and
access to high-performance computing. There are only a handful of
packages that canscreenlibraries of around a billion compounds, and
they oftenrely ontheir code scalability across supercomputing clusters
to perform ‘brute force’ virtual screening. For example, the GigaDock-
ing method implemented within the Orion package from OpenEye was
used todock the full Enamine REAL database (1.4 billion molecules) to
twotargets (purinenucleoside phosphorylaseandheatshock protein90)
in less than a day. To do so, the OpenEye team used up to 45,000
Amazon Web Services CPUs to complete the tasks, corresponding
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to a staggering ~50 years of continuous computing'®’. Similarly, the
AutoDock programme was modified for more effective parallelization
with GPUs, and the resulting GPU-AutoDock method was used on the
27,000 GPUs of the Summit supercomputer to process the Enamine
REAL library against SARS-CoV-2MP™in1day"°. In another large-scale
study, Gorgulla et al.™ used the VirtualFlow platform with AutoDock to
screenthe Enamine REAL library against KEAP1, an E3 ubiquitin ligase
substrate adaptor, in 4 weeks using 8,000 CPUs. Venkatraman et al."
implemented an end-to-end drug discovery approach called Drug-
Sniffer, which required 40,000 computational hours for the screen-
ing of 3.7 billion molecules against 22 target pockets in SARS-CoV-2
viral proteins.

These studies represent rare examples of ultra-large-scale distrib-
uted virtual screening campaigns, which are not generally affordable
for the global research community. While it has been demonstrated
that the use of larger chemical libraries improves the effectiveness
of drug discovery', most reported virtual screening studies rely on
afew million molecules or less. The dramatic expansion of accessible
chemical space requires the development of novel approaches to
virtual screening. Such modern CADD technologies, on the one hand,
shouldbe able torankbillions of potential ligands against any target of
interest within areasonable amount of time, and on the other, should
enable automated hit-selection strategies that require minimal human
intervention, especially as automated chemistry labs driven by artificial
intelligence algorithms are being contemplated and established"*.
Various deep learning-based methodologies discussed above illus-
trate the practicality of hybrid approaches that combine the predic-
tive power of conventional docking with the utility of ligand-based
QSAR modelling. In our opinion, these advances provide opportunities
for global democratization of drug discovery owing to their wider
accessibility and affordability. In particular, deep learning-enabled
methods of docking and predictive polypharmacology could provide
affordable means for screening billions of potential drug candidates.
Furthermore, open-source-enabled and GUI-enabled implementation
of such methods could make virtual screening of ultra-large chemical
libraries more accessible.

Deep learning accelerates quantum mechanics calculations
The high computational demands of quantum mechanics calculations
have traditionally limited their applicability in QSAR modelling and
CADD in general. Consequently, the development of fast, accurate
and universal approximations to quantum mechanics has long been
afocus in computational chemistry that has recently been enriched
by the use of deep learning approaches.

Onetype of deep learning-based model that has been developed
with such a focus is atomistic neural network potentials (NNPs)">"°,
NNPs can predict energies and other quantum mechanics proper-
ties of molecules, generalizing to the same level of accuracy as
density-functional theory on a large set of organic molecules while
being six orders of magnitude faster">"¢, Data acquisition for NNPs is
based onthe concept of active learning, which uses the disagreement
between an ensemble of machine learning potentials to infer the reli-
ability of the ensemble prediction. Active learning allows automatic
sampling of regions of chemical space where the machine learning
potential failsto accurately predict the potential energy, thereby reduc-
ingthesize of the datasetrequired for training by up to 90% compared
to naive random sampling techniques'”’.

Notably, the training process for NNPs is analogous to those used
to train deep QSAR models, except that the target property, such as

energy, iscomputed with full quantum mechanics methodsrather than
measured as in a bioactivity prediction task. While NNPs are fast and
accurate, the majority do notaimto become universalin their descrip-
tion of chemical interactions, which limits their use in CADD to specific
molecular systems. However, this limitation has been addressed with
the breakthrough development of the first universal atomistic NNP for
organic molecules known as ANI-1 (ref. 118).

The results of ANI-1 and its successors™”" have been shown to
approach ‘chemical accuracy’ (errors of ~1 kcal/mol) relative to refer-
ence quantum mechanics data for multiple applications. Even the
early version of the ANI-1 potential was found to be more accurate
than semi-empirical and tight-binding quantum mechanics methods
while being much faster. The model correctly predicted the stability
of ring-containing structures and captured the large conformational
changes. Additionally, the potential accurately predicted shape and
smoothness of the potential energy surface (PES), whichis traditionally
defined by bond stretching, angle bending and torsional rotations. ANI
models have been actively used as a proxy for quantum mechanics cal-
culations to parametrize custom ligands in general force fields such as
the general Amber force field"*. It has been shown that PESs described
by the ANImodels are practically indistinguishable from PESs obtained
with quantum mechanics calculations”"’,

Deep learning improves accuracy of ligand binding affinity
and property calculations

The ANI molecular mechanics scheme has been expanded to predict
protein-ligand binding free energies'?, which represent another target
property for deep QSAR modelling. Binding free energies of ligands
canbe calculated withmolecular dynamics simulations of the protein—
ligand complex using molecular mechanics potential energy of the com-
plexand molecular mechanics and machine learning potential energies
inavacuum for theligand (Fig. 4). The approach has been tested with
predictions of the binding affinities of kinase inhibitors using ANI-2x
potential and AMBER14SB/TIP3P force fields. Studies with inhibitors
for tyrosine-proteinkinase 2 (TYK2) from the Schrédinger JACS bench-
mark set' showed that the machine learning-molecular mechanics
approach substantially reduced the absolute binding free energy errors
obtained with molecular mechanics calculations'. While the molecu-
lar mechanics approach led to free energies with a root-mean-square
error of 0.97 kcal/mol, correcting the molecular mechanics free
energy with the machine learning-molecular mechanics approach
improved resultsto aroot-mean-square error of 0.47 kcal/mol. Notably,
the molecular mechanics to machine learning-molecular mechan-
ics corrections were all positive (up to a magnitude of 4 kcal/mol),
whereas aliphatic groups with high conformational degrees of freedom
tend to have larger corrections.

Therecently developed AIMNet model has arevised architecture
that builds on the success of ANI potentials'*. The overarching prin-
ciple was inspired by atoms in molecules (AIM) theory'**, which states
thatanelectrondensity distribution function canbe used to partitiona
moleculeintointeracting atoms. Inthe AIMNet model, atoms are char-
acterized by learnable atomic feature vectors to approximate complex
interatomicinteractionsinstead of electron density. Knowledge inside
the AIM layer could be exploited tolearn new atomic properties without
effectively retraining the model. For example, following training of the
AIMNet model to predict the energy, partial atomic charges and atomic
volumes, the Gibbs free energy of solvation could be predicted with
an accuracy of 1.8 kcal/mol based on the AIM layer vector only, using
just 6% of the training data'*. Benchmarks for macrocycle conformer
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binding affinity. Machine learning (ML) potentials
developed with deep learning approaches (panel a)
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of this scheme is that the less accurate MM potential
energy of the ligand is replaced by its higher
accuracy ML potential. Here, the MM model uses
the OpenFF small-molecule force field™, while the
ML model uses ANI-2x"’, Details of the algorithm for
the development of the ANI-type ML potentials are
described elsewhere'..
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generationand ranking indicated that the modelis on par with popular
density-functional theory functionals.

Intriguingly, learned molecular representations enable accurate
prediction of molecular properties of critical importance for drug
discovery. A recently developed machine learning model for protein
pK, values achieved unprecedented accuracy of 0.5 log units for all
amino acid types'®. This model substantially surpassed the accuracy
of the popular PROPKA method™** and demonstrated the capabilities of
NNPs to provide pK, parameters that can be used as chemical descrip-
tors in QSAR models or in mechanistic analysis of protein-ligand
interactions'”.

In summary, deep learning methods employed to develop NNPs
have not only enabled the acceleration of quantum mechanics calcula-
tions butalso afforded much higheraccuracyin calculating ligand bind-
ingaffinity and molecular properties of high importance for CADD. For
instance, as discussed above, deep docking methods critically depend
onthe quality of scoring functions usedinthe docking software. Fastand
accurate NNPs, especially those enabled by the recent AIMNet method,
promise to improve the accuracy of scoring functions and develop
novel deep docking approaches as well as molecular simulations
methods with higher efficiency and accuracy.

Potential impact of quantum computing

Challenges in working with both ultra-large databases and with quan-
tum mechanics calculations' could also be addressed by arevolution-
aryadvance in high-performance computing: quantum computing ',

While conventional computers operate on binary encoded data rep-
resented by discrete states O or 1 (bits), quantum computers process
informationbased on the laws of quantum mechanics, where quantum
bits (qubits) can achieve states of 0 and 1simultaneously. Consequently,
qubits can exhibit distinct features, including superposition and entan-
glement, that allow quantum computers to manipulate vast amounts
ofinformationwith very few operations, which enables unprecedented
acceleration of certain computational tasks'.

Itis expected that quantum computers will be able to drastically
outperform conventional processing units in several areas traditionally
interrelated with CADD, including quantum chemistry computations
and machine learning'?”*°. For the former group of approaches, quan-
tum computers should be able to find solutions to the Schrodinger
equation for large molecular systems, thereby bringing revolution-
ary changes into the development of novel synthetic routes, allowing
the modelling of metabolic transformations and modes of action
of covalent drugs, the study of transition states and coordinates of
enzymaticreactions, the development of quantum chemical descrip-
tors to empower QSAR modelling and the computation of accurate
thermodynamics of drug-targetinteractions™, and supporting other
innovations in pharmaceutical discovery'®. For machine learning
methods, application of quantum computing could play a disruptive
roleasit canvastly outperform conventional supervised and unsuper-
vised methods in both computational efficiency and accuracy™®"%
For instance, quantum computing techniques implemented on noisy
intermediate and scale quantum machines already include quantum
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autoencoders, support vector machines, and methods of k-means
clustering and principal component analysis**’. Quantum methods
implemented on fault-tolerant quantum computing devices include
restricted Boltzmann machines, Bayesian inference, least-squares
regressionand support vector machines™°. There are agrowing num-
ber of studies where quantum computing has already been evaluated
for conventional machine learning or deep learning applications in
QSAR and CADD, including target discovery, protein folding, target
site characterization', generative molecular modelling™*, dock-
ing and force field refinement'”’, lead optimization', toxicity risk
assessment®, and molecular matching and similarity searching
through the chemical space'.

The emergence of hybrid CADD architectures integrating big
data modelling algorithms into specialized hardware or combining
classical and task-specific hardware, such as noisy intermediate and
scale quantum computers or GPU platforms, are growing trends in
drugdiscovery. We should expect that components of CADD pipelines
willbe served in the near future by different hybrid models fine-tuned
for particular cheminformatics applications, empowering CADD by
enabling dramatically faster computing using much bigger data sets.

Impact on early stage drug discovery

Althoughitis too early for deep learning methods, and deep QSAR in
particular, to have enabled the development of approved drugs'™, there
isgrowing evidence that these methods have accelerated the preclinical
research stages for small-molecule drug candidates. After 2020, when
Exscientiaannounced thatits first drug candidate designed by artificial
intelligence entered a phasel clinical trial, several companies followed
withsimilar announcements. Notably, Exscientia reported that it took
12monthsonly to complete the exploratory research phase priorto the
trial. Similarly, Insilico Medicine reported that it took them 30 months
todevelop anovel, artificial intelligence-designed, phase I anti-fibrotic
clinical candidate, starting with the discovery of a novel target. Both
companies employ types of deep learning approaches that we have
discussed in this Perspective in the context of deep QSAR as part of
their computational platforms. These recent successes suggest that
the field of deep QSAR is beginning to reachiits ‘plateau of productiv-
ity’inthe Gartner hype cycle. Continued development and use of deep
QSAR methods should increasingly enable accelerated discovery of
small-molecule drug candidates, which could be especiallyimportant
inthe face of noveland often unpredictable threats posed by emerging
infectious diseases such as COVID-19.
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