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Abstract

Quantitative structure–activity relationship (QSAR) modelling, 
an approach that was introduced 60 years ago, is widely used in 
computer-aided drug design. In recent years, progress in artificial 
intelligence techniques, such as deep learning, the rapid growth 
of databases of molecules for virtual screening and dramatic 
improvements in computational power have supported the emergence 
of a new field of QSAR applications that we term ‘deep QSAR’. Marking 
a decade from the pioneering applications of deep QSAR to tasks 
involved in small-molecule drug discovery, we herein describe key 
advances in the field, including deep generative and reinforcement 
learning approaches in molecular design, deep learning models 
for synthetic planning and the application of deep QSAR models in 
structure-based virtual screening. We also reflect on the emergence 
of quantum computing, which promises to further accelerate deep 
QSAR applications and the need for open-source and democratized 
resources to support computer-aided drug design.

Sections

Introduction

Fundamentals of deep QSAR 
modelling

Deep QSAR and generative 
modelling

Deep QSAR in structure-based 
screening

Outlook

1University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. 2Carnegie Mellon University, Pittsburgh, PA, USA. 
3University of Strasbourg, Strasbourg, France. 4ETH, Zurich, Switzerland. 5University of British Columbia, Vancouver, 
BC, Canada. 6Photonic Inc., Coquitlam, BC, Canada.  e-mail: alex_tropsha@unc.edu; artc@mail.ubc.ca

https://doi.org/10.1038/s41573-023-00832-0
http://crossmark.crossref.org/dialog/?doi=10.1038/s41573-023-00832-0&domain=pdf
http://orcid.org/0000-0003-3802-8896
http://orcid.org/0000-0003-1886-925X
http://orcid.org/0000-0001-6706-1084
http://orcid.org/0000-0002-1599-1439
mailto:alex_tropsha@unc.edu
mailto:artc@mail.ubc.ca


Nature Reviews Drug Discovery

Perspective

in deep QSAR but are not covered here as these issues were reviewed 
recently elsewhere9. Finally, we highlight emerging trends in the field, 
including the need and potential for open-source and democratization 
initiatives in computer-aided drug design (CADD) and the potential 
for quantum computing to dramatically accelerate the processing of 
ultra-large data sets for challenging tasks such as the use of machine 
learning-accelerated quantum mechanical calculations to improve 
ligand scoring accuracy in molecular docking.

Fundamentals of deep QSAR modelling
Conventional cheminformatics tasks such as QSAR modelling (Box 1) or 
chemical similarity searching rely on molecular descriptors designed 
to numerically characterize molecular structures at different levels 
of structure representation, from 1D to 3D, or even 4D (Fig. 1). How-
ever, the adaptation of deep learning to chemical data sets requires 
novel types of molecular representation, where descriptor engineer-
ing (which involves generation and selection of the most informative 
numerical molecular descriptors) is replaced by molecular embeddings 
(where molecules are represented by vectors in artificially created 
high-dimensional spaces that are employed in learning tasks using 
neural network architectures) (Fig. 1). Notably, common machine learn-
ing approaches use conventional chemical descriptors computed from 
chemical structures based on defined formulas (Box 1) prior to model 
development. Conversely, deep learning models can employ molecu-
lar embeddings created from standard chemical input data, such as 
molecular SMILES or chemical graphs, that can be modified as part 
of the learning process to achieve the most accurate prediction of the 
property of interest10 (Fig. 1). Thus, these approaches generally learn 
feature vectors corresponding to a molecule or an atom through the 
training of a deep learning model on a specific task.

Thus, unlike traditional QSAR modelling (Box 1), chemical struc-
ture embedding (which could be viewed as a process analogous to 
chemical descriptor calculation in traditional cheminformatics) and 
learning using this representation are inseparable components of 
the model optimization process. Ultimately, practitioners have to 
decide which model architecture is best suited to the task at hand. 
Models can be designed heuristically based on human experience or 
semi-automatically with an evolutionary algorithm11, neural architec-
ture search or meta-learning12. A recent study suggested13 pre-training 
a deep learning model with one million unlabelled molecules from 
ChEMBL to learn the representations, followed by model fine-tuning 
for various downstream quantitative structure–property relationship 
or QSAR tasks.

An important advantage of deep QSAR methods over traditional  
QSAR methods is that they may more effectively address multi-objective 
optimization tasks by using knowledge transfer, where, in practical 
terms, concurrent use of different data available for different tasks 
helps improve prediction accuracy for each task14. However, it has been 
shown that model improvement over respective single-task QSAR mod-
els is not always assured: better or worse performance can be obtained 
depending on the level of correlation between activities against indi-
vidual targets14. Recent studies have suggested additional methodo-
logical advances to improve the accuracy of deep QSAR application to 
multi-objective learning15.

Traditional areas of concern for QSAR modelling, such as data 
curation, model applicability domains and independent model vali-
dation, remain key areas for consideration when building deep QSAR 
models. Methods for chemical and biological data curation that com-
bine automatic and manual efforts have been extensively described16–18, 

Introduction
The field of quantitative structure–activity relationship (QSAR) 
modelling — in which a quantitative description of a chemical struc-
ture is correlated with its biological activity or other types of chemical 
properties (Box 1) — can be traced back to a seminal publication by 
Hansch et al. in 1962 (ref. 1). Since then, the field has progressed with 
the substantial expansion of biological and chemical data and concur-
rent use of increasingly more complex machine learning algorithms 
for model development2. Additionally, QSAR modelling concepts have 
proliferated across multiple areas of data-rich research, including drug 
design, health care, materials science and education3.

As the size and complexity of data sets in all areas of research have 
grown, deep learning has emerged as a type of machine learning that 
can recognize complex patterns in big data and rationalize them to pro-
duce accurate predictions. The origin of modern deep learning dates 
back to the mid-1960s, when the foundational book by Ivakhnenko 
and Lapa4 was published. However, applications of deep learning in 
areas such as image recognition and natural language processing have 
progressed especially rapidly in the past decade, in parallel with large 
increases in computational power, methodological advances and the 
expansion of data. The initial application of deep learning in QSAR mod-
elling was in the Merck Molecular Activity Challenge hosted by Kaggle 
in 2012. Entrants were asked to build QSAR models using numerical 
descriptors generated from the chemical structures of compounds in a 
training set with known biological activities, and models were assessed 
by their abilities to predict the biological activities of compounds out-
side the training set. This has been followed by multiple contributions 
in a burgeoning area of research we now call deep QSAR, with more 
than 200 publications since the first paper describing the use of deep 
learning in QSAR was published in 2015 (ref. 5).

In this Perspective, marking both the sixtieth anniversary of the 
overall QSAR field and the tenth anniversary of the introduction of 
deep learning approaches in QSAR modelling, we summarize ongoing 
developments that have catalysed and enabled the emergence of deep 
QSAR modelling and the application of these models in virtual screen-
ing of greatly expanded chemical space. These developments include 
advances in artificial intelligence, especially deep learning6–8, the rapid 
growth of molecular databases (Box 2) and a new generation of molecu-
lar representations based on embeddings of both conventional linear 
notations, such as SMILES, and chemical graphs (Box 3).

After briefly overviewing the fundamentals of deep QSAR model-
ling, we focus on the latest advances that are particularly relevant to the 
discovery of small-molecule drug candidates. We discuss deep QSAR in 
generative molecular design and highlight the potential for integrating 
QSAR models used in generative design with deep learning models for 
synthesis planning and experimental chemistry into closed-circle, fully 
automated drug discovery platforms. We then describe approaches for 
virtual screening using deep QSAR models, which could help harness 
the recent growth in the size of explicitly enumerated chemical librar-
ies available for virtual screening (Box 2). We predominantly highlight 
unique developments and applications in QSAR modelling that have 
been enabled or catalysed by the emergence and application of deep 
learning methods. Traditionally important areas of drug discovery and 
development, such as physical property prediction and modelling of 
absorption, distribution, metabolism, excretion and toxicity character-
istics, can also benefit from deep QSAR modelling but are not reviewed 
here, as such a discussion would expand but not enrich the intended 
scope of the article. Similarly, dramatic improvements in hardware, 
such as graphics processing units (GPUs), are also supporting advances 

https://www.kaggle.com/c/MerckActivity
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but the large size of the data sets to which deep QSAR methods are or 
could be applied means there is now a need for methods that can effec-
tively address data curation at scale as manual curation is not feasible. 
Reflecting on this need, automated workflows are being developed to 
process both training and external data sets, such as those available in 
KNIME, to ensure the trustworthiness of models19.

Similarly, deep QSAR models require rigorous external validation. 
This critical aspect of QSAR model development has been extensively 
discussed in the literature, and rigorous model validation workflows 
have been developed3,20. These workflows can be employed when build-
ing deep QSAR models for big data sets, but their execution requires 
significant computational resources. Furthermore, with the substantial 
expansion of external virtual screening sets used to identify novel active 
compounds, assessing the applicability domain of deep QSAR models 
(that is, whether external data are within or out of the distribution of 
the training data set) also becomes more challenging.

Recent studies have expanded the original concept of modela-
bility21, which was introduced to explain the low accuracy of QSAR 

models for data sets with a large fraction of “activity cliffs”22 (pairs of 
compounds with the highest mutual similarity but different activity 
classes). This concept was recently expanded by introducing the rough-
ness of molecular property landscapes23, and the argument was made 
that estimating the roughness could improve the extrapolative accuracy  
of QSAR models. Recent studies have also emphasized the importance of  
addressing prediction confidence, in addition to traditional objectives 
of predicting the activity class or value for external compounds. For 
instance, Bosc et al.24 advocated for the use of conformal prediction 
methods to provide information on the certainty of predictions. As both 
chemical bioactivity data sets and virtual screening libraries continue 
to grow, rigorous assessment of chemical distribution and prediction 
certainty should be a requisite part of any deep QSAR modelling study.

Deep QSAR and generative modelling
Generative molecular design
One traditional use of QSAR models is the virtual screening of chemical 
databases to identify molecules of interest that can be purchased and 

Box 1

An introduction to QSAR modelling in drug discovery
QSAR modelling was originally introduced as a computational tool to 
relate molecular properties (such as dipole moment or hydrophobicity) 
to bioactivities measured for small congeneric series of compounds. 
It has since evolved in terms of the complexity of both molecular 
char acterization and statistical or machine learning approaches 
used to build models as well as in the size and chemical diversity of  
the data sets used for model development (reviewed in ref. 25).

QSAR modelling has progressed to become one of the major 
tools in computer-assisted drug discovery, and key principles 
and best practices of QSAR modelling have also found multiple 
applications in other areas of chemistry, materials science and 
beyond (see ref. 3 for a recent review). In addition to the prediction 
of bioactivity of compounds, QSAR methods have been employed 
widely in the prediction of multiple physicochemical properties, 
such as aqueous solubility, melting point and pKa, that are routinely 
considered by medicinal chemists. QSAR approaches have also been 
employed in the calculation of biological properties of compounds 
other than target bioactivity such as various absorption, distribution, 
metabolism, excretion and toxicity end points of critical importance 
in drug development.

As we emphasize in this Perspective, the accumulation of big data 
on chemical bioactivity for large numbers of molecular targets has 
created a need to accelerate different types of chemical computing 
used in both ligand-based and protein structure-based drug discovery. 
These challenges have led to the proliferation of QSAR approaches 
(recently enhanced by deep learning methods) to areas that historically 
have not employed statistical modelling methods such as quantum 
chemistry and molecular docking.

Modern QSAR approaches can be generally described as an 
application of statistical and machine learning techniques to finding 
empirical relationships of the form Ai =  ̂k (D1, D2,…, Dn), where Ai are 
biological activities (or other properties of interest) of molecules,  
D1, D2,…, Dn are calculated (or, sometimes, experimentally measured) 

structural properties (known as molecular descriptors) of compounds, 
and k ̂is some empirically established mathematical transformation 
that should be applied to the descriptors to calculate the property 
values for all molecules for which the relationship holds.

Depending on how molecular structure is characterized, QSAR 
models have been classified as 1D, 2D, 3D or even higher levels (Fig. 1). 
Examples of 1D descriptors include molecular weight, counts of 
atom types, counts of hydrogen bond donors or acceptors, number 
of rings, or number of specific functional groups. Descriptors in the 
2D category include multiple molecular indices calculated from 
molecular graphs. 3D descriptors are calculated from the knowledge 
of molecular geometry (for instance, polar surface area or 3D atom 
pairs) and 4D descriptors are calculated for multiple molecular con-
formations arising from conformational search or molecular dynamics 
simulations.

With the development of multiple types of molecular descriptors, 
increasingly more complex machine learning and descriptor sampling 
approaches (k-nearest neighbour, support vector machines, random 
forest, artificial neural networks and others) have been introduced 
with prominent use in QSAR modelling. As the complexity of both 
data and methods has increased, QSAR modelling has gradually 
transitioned from a simple statistical tool related to concepts in 
physical organic chemistry to an application of multivariate statistical 
modelling of data in chemical and materials sciences. Thus, it is not 
surprising that deep learning methods are increasingly being applied 
in QSAR modelling.

As we discuss methods and applications of deep QSAR, it is 
important to recognize that the best practices of model development 
and validation established in the field and summarized in several 
key publications2,18,20 remain valid. These key principles include the 
importance of chemical and biological data curation, which can be 
accomplished using respective workflows16,17, as well as rigorous 
model validation protocols20.

https://sites.google.com/site/dtclabdc/
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tested (reviewed in ref. 25). However, progress in medicinal chemis-
try requires the discovery of new chemical entities. Generating new 
molecules from scratch (de novo) involves construction, scoring and 
optimization26 of molecular structures and advances in these tasks 
have recently been achieved using deep QSAR coupled with generative 
chemistry27.

Methods employed for de novo molecular design include 
rule-based and rule-free approaches28,29, both of which have been shown 
to identify new bioactive compounds that are also synthetically acces-
sible (see ref. 30 for a review). Rule-based methods use sets of molecular 
building blocks and chemical transformations such as virtual reaction 
schemes for structure generation31. In contrast, rule-free ‘generative’ 
(or ‘constructive’) deep learning methods32 sample new molecules from 
a learned statistical distribution of the training data (‘latent space’), 
without explicitly representing their molecular structure in chemical 
terms, and this molecular design process is difficult (if not impossible) 
to describe in a way that can be easily interpreted.

Many generative drug design approaches have been built on deep 
neural networks (Fig. 2a–d). The most prominent methods are chemical 
language models33 that employ textual representation of molecules by 
SMILES strings to learn the intrinsic grammar of the strings and generate 
new strings corresponding to novel realistic molecules. The majority of 

the chemical language models reported in the literature have employed 
recurrent neural networks with long short-term memory34, variational 
autoencoders35 and generative adversarial networks36, and graph neural 
networks37 have also been used to learn and generate molecular graphs. 
Several other deep learning architectures have been proposed for 
this purpose, including hybrid approaches combining rule-based and 
rule-free networks38. A recent review provides a good summary of neural 
network architectures used in generative chemical language models39.

All of the methods considered above typically sample new mol-
ecules from a latent representation of molecular structure learned by 
the neural network during model training; that is, they act as statisti-
cal structure generators. At some point during or after the molecule 
construction process, the proposed designs are evaluated and pri-
oritized according to the desired function; that is, their biological 
activity and/or other properties. Notably, it has also recently been 
demonstrated that the inverse strategy — generating molecules with 
desired properties that are decoded from a particular area of the latent 
descriptor space — can be successfully pursued using a type of deep 
learning method called a conditional recurrent neural network40.

Virtual assessment of the target property of the generated mol-
ecules is the most critical and error-prone part of the design process. 
Scoring of new molecules can be performed in several ways (Fig. 2e,f). 

Box 2

Expansion of searchable chemical space
Advances in click chemistry, robotics, synthesis automation and 
computational planning have led to exponential growth in the sizes 
of chemical databases in recent years.

One of the most popular databases for sourcing molecules for 
virtual screening is ZINC. In 2006, this database contained less than 
a million molecules, but the most recent ZINC22 version has grown 
to over 37 billion unique chemical entries — a >50,000-fold increase, 
with the most dramatic growth in the last 2 years (see figure)152.

Commercial libraries such as WuXi AppTec or CHEMriya by 
OTAVA have also grown rapidly. The commonly used Enamine REAL 
database currently offers up to 5.5 billion unique compounds for 
order, while the Enamine REAL Space on-demand library can be 
expanded into ~38 billion entities (when isomers are considered). 
Similarly, the SAVI database encompasses 1.75 billion chemicals 
that have been generated by applying 53 chemical transformations 
to 150,000 Enamine building blocks64. There is also a growing 
number of knowledge-based collections, including BioSolveIT 
KnowledgeSpace, which describes the chemical space of hundreds 
of billions of structures with a plausible synthetic feasibility.

Recently, a comprehensive collection of 4.2 billion molecules 
has been aggregated from 23 different sources in an effort to find 
direct antivirals against SARS-CoV-2 (ref. 153). Many (if not all) 
pharmaceutical companies have created their own proprietary 
ultra-large chemical databases, for example, PLC by Eli Lilly, PGVL  
by Pfizer and XXL collections by GlaxoSmithKline154.

Further expansion of accessible chemical space could be  
already projected into trillions of entities. Ruddigkeit et al. generated 
166.4 billion virtual molecules containing up to 17 atoms restricted 

to basic chemical elements (C, N, O, S and halogens) that could be 
made by following simple synthetic rules155. Other virtual databases 
such as eXplore from eMolecules and MolDB from DeepCure already 
include trillions of hypothetical entries, with the latter collection 
already aiming at expanding to 1018 synthesizable compounds 
constructed by generative models.
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These include using an external QSAR model or enriching the train-
ing data with reference molecules that have the desired activity41, 
iteratively adapting the parameters of the generative model to 
preferentially construct molecules with the desired properties (for 
example, by one-shot or few-shot learning42, transfer learning43, or 
reinforcement learning27), or directly by using the probabilities learned 
by the generative model as the evaluation criterion44. Depending on 
the nature of the machine learning algorithm employed for adap-
tive model optimization, this criterion is sometimes referred to as  
‘reward’ or ‘fitness’.

Generative drug design with deep QSAR models
Chemical language models combined with external scoring seem to 
currently dominate the field of generative chemistry, possibly owing 
to the availability of the respective software tools45–47. Thus, deep QSAR 
models that are built to assess molecular bioactivity have recently 
been combined with chemical language models, either as separate 
external tools to rank the generated molecules by their activity or as 
model-intrinsic scoring functions to guide chemical structure gen-
eration towards molecules with the desired properties39,41,47. Studies 
that also include experimental validation of compounds proposed 
by generative molecular design methods are still scarce but are 
beginning to emerge48. For instance, compound 1 (Fig. 2f) is a new 
receptor-related orphan receptor gamma (RORγ) inverse agonist  
(IC50 370 nM), which emerged as a top-scoring design based on a sam-
pling probability estimate44. This beam-search approach eliminates the 
strict need for an explicit QSAR model by relying on the learned statisti-
cal distribution of the training data, which included known RORγ modu-
lators. Additional examples of experimentally bioactive compounds 
designed de novo using generative chemical language approaches 
have been discussed in a recent review39; these include a dual modu-
lator of the retinoid X and peroxisome proliferator-activated recep-
tors and an inhibitor of Moloney murine leukaemia virus kinase 1 and  
cyclin-dependent kinase 4.

As discussed above, similar to conventional QSAR models, deep 
QSAR models suffer from a decrease in performance and accuracy 
when applied to poorly curated data, when they lack appropriate vali-
dation or when applied to out-of-domain data. To increase confidence 
in bioactivity predictions, model ensembles can be used, combining 
the predictions with a majority voting approach49. In a recent study50, 
an ensemble of 100 deep QSAR models was trained with the ELECTRA 
(Efficiently Learning an Encoder that Classifies Token Replacements 
Accurately)51 algorithm. Each model predicted phosphoinositide 
3-kinase-γ (PI3Kγ) inhibition with a slightly different performance. 
Testing of a subset of the computer-generated compounds showed that 
the difference in votes (0 to 100) for each de novo-generated molecule 
was approximately, though not perfectly, reflected in their dissociation 
constants. The top-scoring compound, compound 2 (Fig. 2f), potently 
inhibited the intended target PI3Kγ (Ki 63 nM).

Computational models can suggest potential new drug candidates 
to medicinal chemists within seconds to hours; therefore, synthe-
sizing chemicals for subsequent experimental evaluation remains a 
time-limiting step at this point in the process. The rapid development 
of robotic platforms for drug and materials design has stimulated the 
creation of efficient cheminformatics tools for planning and guiding 
organic synthesis. These tools aim to assess the synthetic accessibility 
of a compound and suggest feasible synthetic routes between available 
starting materials and the target molecule, and are discussed in the 
following section.

Deep learning in synthesis planning
Two strategies are conventionally used to determine a series of reaction 
steps that lead to a given compound from available starting materials: 
forward synthesis (starting from a collection of building blocks), and 
backward synthesis or retrosynthesis (starting from the target molecule 
and searching for putative precursors and the respective reactions52). 
Generally, a synthetic route contains several one-step reactions for 
which major products, yield and, ideally, the reaction rate should be 
assessed. For a given elementary step, reaction conditions (solvent, 
catalyst, temperature and so on) leading to a reasonable yield should 
be suggested.

Computer-assisted synthesis planning has long been an impor-
tant area of research, starting from seminal contributions by Corey53. 
Machine learning methods have been progressively brought into this 
field, as extensively discussed in a recent review54. As in many other dis-
ciplines, the growth of information on chemical reactions and the devel-
opment of large reaction databases stimulated the emergent use of 

Box 3

Molecular cartography
The rapid growth of modern chemical databases requires special 
tools to analyse and visualize this information. In this context, 
molecular cartography or chemography can be particularly 
useful. Chemography employs multidimensional scaling methods 
to project compounds in chemical libraries represented by 
multiple molecular descriptors (chemical space) onto a 2D map156. 
Chemical space visualization has been an important component of 
cheminformatics research for many years157; however, deep learning 
approaches brought innovation and acceleration into this area of 
cheminformatics to enable the visualization of modern ultra-large 
chemical libraries.

One such recent method — generative topographic mapping 
(GTM) — allows both compound positions on a map and the data 
probability distribution function to be obtained, which, in turn, 
makes it possible to describe (ultra)large compound collections. 
GTM can be used efficiently for various cheminformatics tasks158–160, 
including chemical data visualization and analysis, prediction of 
properties or biological activities, comparison of large chemical 
libraries, drug repurposing, and virtual screening. Related options  
are implemented in the polyfunctional ChemSpace Atlas tool161,  
which includes >40,000 hierarchically related maps accommodating 
several billion compounds.

In combination with SMILES-based or graph-based autoencoders, 
chemography can be used for automatized generation of chemical 
structures with desired biological activities, which is an emerging 
area of cheminformatics. It has been demonstrated that GTM con-
structed on the autoencoder latent variables provides direct and 
intuitive access to the autoencoder chemical space. Sampling of this 
space can be ‘driven’ by the map towards the highly relevant zones 
of a drug discovery project162. This approach can also be extended 
to chemical reactions where, for instance, a cartography-enhanced 
artificial intelligence tool enabled the discovery of several new types 
of Suzuki coupling reaction163.



Nature Reviews Drug Discovery

Perspective

deep learning methods in computer-assisted chemical synthesis plan-
ning. In their seminal studies, Segler et al.55,56 reported deep neural net-
work models that assess the probabilities of different transformations, 
which, in combination with symbolic artificial intelligence methods and 
the Monte Carlo Tree Search, led to the selection of the most feasible 
reaction pathways. Two alternative methods — template-based meth-
ods and template-free methods54 — were applied both to retrosynthesis  
and to outcome prediction.

In template-based methods for retrosynthesis, the templates 
(transformation rules) can either be suggested by expert chemists or 
extracted automatically from reaction databases. Retrosynthetic trans-
formation rules provided by expert chemists were used in LHASA, the 
first expert system for organic synthesis planning, which was developed 
around 50 years ago by Corey and Wipke52. This concept has now been 
achieved in several retrosynthetic tools, including the popular CHE-
MATICA (also known as SYNTHIA) programme57, which integrates more 
than 50,000 mechanism-based transformation rules deduced manually 
from the experience of organic chemists. The main trend is currently the 
automatic extraction of transformation rules (patterns) from chemical 
reaction databases. Such an approach was initially used by Segler et al.55,  
and it was also implemented in the popular AiZynthFinder tool58.

Alternatively, in template-free methods for retrosynthetic route 
planning, relationships between structures of reactants and products 
of chemical reactions are deduced directly. Thus, Jin et al.59 used a 
graph-convolutional neural network with a global attention mechanism 
to predict pairs of atoms belonging to the reaction centre. Another 
template-free method, sequence-to-sequence learning, is based on 
natural language processing and is widely used in text translation60. 
In the case of chemical reactions, SMILES strings of the reactants 
and the products are analogous to the initial text and its translation, 
respectively. This methodology has been used for the prediction of 
retrosynthetic reaction routes61 and of reaction products62.

In forward synthesis modelling, new molecules are grown in a 
stepwise manner, and all possible solutions are enumerated at each 

step, followed by the submission of top-scoring intermediates into a 
subsequent growing step. The quality of designed products is assessed 
by the similarity to a target molecule. This way, the forward synthesis 
approach can be utilized as a de novo design tool coupled with syn-
thesis prediction. One of the most productive forward synthesis tools 
was developed in the Schneider group and implemented in the DOGS 
programme31. Forward synthesis is also utilized to explore chemical 
reaction networks originating from given building blocks63 and to 
generate virtual compound libraries64,65.

A synthetic accessibility score (or the opposite, a synthetic com-
plexity score) represents another important scoring metric to aid the 
prioritization of virtual compounds. It can be used as a quantitative 
filter for the screening of virtual libraries or de novo design. Among 
different matrices of this kind66,67, the most popular is SAscore68, which 
considers both a fragment score based on fragment occurrence in 
PubChem compounds, and a complexity penalty calculated as a func-
tion of the number of rings, chiral centres, macrocyclic fragments and 
the total number of atoms. Recently, Coley et al.69 proposed SCScore, 
a synthetic complexity score that always rates products higher than 
reactants.

In addition to assessing synthetic accessibility, it is important to 
assess reaction kinetic and thermodynamic characteristics as part of 
forward synthesis planning. Such predictive models can be built using 
condensed graphs of reaction (CGR)70, which combine the information 
about all reactants and products. Fragment descriptors generated for 
CGR are combined with solvent and temperature descriptors and then 
used in the modelling of reaction rate constants for bimolecular nucleo-
philic substitution67,71, bimolecular elimination72 and different types of 
cycloaddition73 as well as for equilibrium constants of tautomerization 
reactions74. Recently, some studies on reaction yield prediction were 
also published, but the results appeared somewhat controversial as 
the model quality is generally good for the sets of data collected using 
high-throughput techniques75,76 but quite poor for diverse reaction 
data gathered from the literature sources77,78.
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Fig. 1 | Contrasting traditional and deep QSAR models. Both approaches 
employ similar input data representing molecules in 1D to 4D. However, 
traditional QSAR methods (shown on the left) require calculation of explicit 
numerical descriptors from the respective molecular representations that are 

used for various machine learning tasks (that is, descriptor calculations and 
machine learning are separated), whereas deep QSAR approaches (shown on the 
right) learn molecular representations as part of model optimization conducted 
in the latent chemical space.
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Modelling of reaction conditions has also been attempted in recent 
studies. CGR-derived fragment descriptors were used by Marcou et al.79 
to obtain classification models able to predict optimal types of solvents 
and catalysts for the Michael reaction. In another study, Gao et al.80 
described neural network-based models that predict the catalyst, sol-
vent, reagent and temperature for a particular reaction, and reported 
a close match (69.6%) to experimental conditions within the top-10 
predictions. The likelihood ranking approach developed by Afonina 
et al.81 outputs several alternative reaction conditions ranked with  
the help of a neural network-based QSAR model. Lin et al.82 followed the 
heuristic principle: similar reactions proceed under similar conditions, 

allowing the problem of reaction condition assessment to be reduced 
to a simple similarity search in reaction databases with recorded 
conditions, which is especially effective with the aforementioned  
CGR technology70.

Potential for automated compound design
Developments with machine learning models for molecule construction 
and synthesis planning have opened an intriguing opportunity for fully 
automated molecular design7,83 in which fully robotic platforms could 
make decisions concerning both the structure of the molecule to be syn-
thesized and the related synthesis plan without human intervention84.  
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Fig. 2 | Generative molecular design. Commonly used architectures of 
generative models for chemical design using reinforcement learning (part a),  
diffusion models (part b), generative adversarial networks (part c) and a 
variational autoencoder (part d). These architectures differ in the specific 
protocols used to train models using molecular embeddings in the latent 
space (represented as grey rectangles with white circles) and generate novel 
compounds. See ref. 32 for a detailed discussion of these architectures.  
A generative model (part e, blue box) is trained with sets of molecules with desired 
properties, approximating the statistical distribution of the training data (grey box).  
New molecules are generated by sampling from the learned distribution.  

The biological activity (and/or other properties) can be predicted with a QSAR 
model (external scoring, red box) or by directly using the model-intrinsic 
sampling probability of a new molecule as a quality criterion (internal scoring). In 
situations with limited training data, few-shot learning or transfer learning can be 
used to bias a generic generative model towards the molecules of interest. Model 
reinforcement establishes a feedback loop from the QSAR model to the learning 
instance, aiming to bias the generative model towards constructing top-scoring 
new molecules. Examples of molecules designed by generative models with deep 
QSAR (part f). Compound 1 acts as an inverse agonist of receptor-related orphan 
receptor-γ (RORγ) and compound 2 inhibits phosphoinositide 3-kinase-γ (PI3Kγ).
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Importantly, such approaches could be naturally integrated with deep 
QSAR models, directing the synthesis of compounds with desired bio-
logical and physicochemical properties. The unique aspect of model 
integration within the design, make, test, analyse cycle83 is the need to 
process data generated by automated chemistry on the fly and translate 
model predictions into new synthetic instructions. The obvious neces-
sity to optimize multiple objectives of automated design and synthesis of 
compounds with the desired properties, purity, yield, and bioactivities 
along with the large volumes of data generated by such systems suggest 
the growing use of deep QSAR models that particularly excel for large 
data sets and multi-task optimization. Emerging prototypes of such 
fully automatized systems have been reported75,85,86 (summarized in a 
recent review84). We expect that rapid improvements in the methodol-
ogy and software for artificial intelligence-driven chemical synthesis87 
will open a new era of artificial intelligence-driven synthetic chemistry 
assisted by deep QSAR.

Deep QSAR in structure-based screening
Virtual screening of large molecular libraries (often in excess of 
1,000,000 compounds) is commonly used to identify potential ligands 
when suitable structural information on the protein targets is avail-
able. Typically, these computational approaches involve two steps: 
docking the molecules into the binding site to achieve a realistic ‘pose’ 
and scoring these poses to rank virtual screening hits and to support 
decision-making about which compounds to test in experiments. Thus, 
the common objectives of molecular docking approaches include the 
prediction of both the pose of the ligands and their binding scores, which 
are expected to correlate with experimentally measured binding affinity.

In traditional docking approaches, docking scores can only be 
calculated following the prediction of the ligand poses; therefore, 
docking and scoring of ultra-large chemical libraries comprising bil-
lions of molecules remain very challenging even with current compu-
tational power. The challenge of rapidly calculating docking scores 
for ultra-large compound libraries has been addressed recently with 
the emergence of an approach termed ‘deep docking’88. As discussed 
in the next section, deep docking emerged at the interface between 
traditional approaches to score calculation and deep QSAR modelling.

Progressive docking and early adaptations of active learning
In 2006, the use of QSAR modelling and active learning to predict 
docking scores from computationally inexpensive chemical descrip-
tors for small-molecule compounds in a virtual screening library 
was pioneered in an approach known as progressive docking89. This 
approach utilized scores generated for a fraction of small molecules 
selected from a virtual screening library by docking these compounds 
against a particular protein target of interest. Docking scores obtained 
for this small set were used as a target property (in place of the tradi-
tional use of bioactivity measurements) to build a QSAR model that 
was then used to estimate docking outcomes for as-yet-unprocessed 
ligands and to iteratively remove entries predicted to have unfavour-
able scores from the docking database to save computational cost. 
Progressive docking was tested on ~90,000 molecules screened by 
the docking programme Glide against a number of protein structures 
available at the time, including the sex hormone-binding globulin, 
carbonic anhydrase, corticosteroid-binding globulin, HIV reverse trans-
criptase and, notably, SARS-1 Main protease (Mpro). For each of these 
targets, protein-independent ‘inductive’ ligand descriptors90 were 
used to approximate continuous Glide SP values for as-yet-undocked 
compounds, while using only 10% or 20% of the database for training. 

The application of the resulting linear QSAR models approximating 
Glide SP scores enabled up to 2.6-fold acceleration of the virtual screen 
while maintaining an up to 99% hit recovery rate89.

Published a few years later, the NNscore method introduced 
non-linear QSAR modelling of docking scores91. The authors con-
structed a shallow artificial neural network consisting of 194 input 
nodes corresponding to the molecular descriptors of ligands (such as 
pairwise atom binding, various energy terms and the number of rotat-
able bonds) connected to a five-unit hidden layer, followed by a layer 
with ‘good or poor binder’ classification node. In a later study, the pos-
sibility of accurate emulation of docking scores with a conformational 
predictor was proposed by Svensson et al.92. Another methodology was 
employed in the iterative approach implemented for Apache Spark93, 
in which the authors proposed a strategy very similar to progressive 
docking, wherein they iteratively docked sets of ligands from a large 
virtual screening library to form progressively changing training sets 
for model building and used the models to predict docking scores for 
the remaining ligands from the original library to progressively exclude 
low-scoring molecules and prioritize the high-scoring ones.

Accelerated docking score prediction with deep docking
While the early studies described above demonstrated an intriguing 
opportunity for the prediction of computationally intensive docking 
scores by computing them using simplistic ligand descriptors, the 
reported twofold to fourfold acceleration in library screening is still 
insufficient to deal with molecular libraries of a billion compounds or 
more. Only with the emergence of deep learning methods have such 
approaches become feasible. A deep docking approach making use of 
deep QSAR modelling for accelerated screening of ultra-large chemical 
libraries was developed in early 2020 (ref. 88) (Fig. 3).

The combination of active deep learning with simple, protein- 
independent 2D fingerprint chemical descriptors makes deep dock-
ing particularly suited for virtual screening of emerging giga-sized 
chemical libraries using standard computational resources. For exam-
ple, deep docking enabled the evaluation of 1.4 billion compounds  
from the ZINC15 database against SARS-CoV-2 Mpro using only 60 CPU 
cores employed for Glide docking, and 4 GPU cores for deep neural 
network training88. The top 1,000 hits from the ZINC15 database (cor-
responding to 585 distinct chemical scaffolds) were disclosed, many 
of which have been subsequently independently confirmed as active 
compounds94. Importantly, the rapidity of the process allowed initial 
results to be published on the day the COVID-19 pandemic was declared 
by the World Health Organization88.

This original publication88 was followed by a series of similar deep 
docking campaigns with ultra-large chemical libraries that employed 
different docking software and various linear, non-linear, and machine 
learning approaches to build QSAR-like models to predict docking 
scores but generally replicated the original deep docking workflow. 
These recent studies are summarized in Table 1. The most recent exam-
ples of experimentally confirmed hits emerging from deep docking 
approaches include micromolar inhibitors of SARS-CoV-2 Mpro (ref. 95) 
and papain-like protease96 as candidate antiviral agents and Lin28 
inhibitors97 with potential application as anticancer agents.

Large-scale and consensus deep docking
The emergence of active deep learning approaches, such as deep 
docking, has significantly reduced the computational cost of 
structure-based virtual screening campaigns, making it possible 
to routinely evaluate libraries composed of >1 billion compounds,  

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/artificial-neural-network
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such as ZINC or Enamine REAL, in their entirety, using standard com-
putational setups that are affordable to many CADD practitioners. For 
instance, in a recent proof-of-principle study, the authors were able 
to screen the entire ZINC15 database (1.4 billion molecules) against 
12 drug targets, effectively reducing the amount of computation by 
100-fold or more while recovering high-scoring molecules confirmed 
by conventional docking98.

An intriguing emerging opportunity is the use of multiple docking 
programmes to build deep docking models, which enables CADD sci-
entists to rely on and, hence, incorporate various consensus protocols 
into hit selection99. The use of consensus docking has a long-standing 
history100,101 and is an integral part of best practices in CADD102. Fur-
thermore, the application of rigorous consensus docking protocols 
to ultra-large chemical libraries could enable the development of fully 
automated hit-calling approaches that would not require any expert 
involvement. For example, a high-throughput virtual screening pipeline 
was described recently that utilized deep docking with the Glide, ICM, 
FRED, GPU-AutoDock and QuickVina2 programmes, which were all used 
to screen 40 billion molecules (combining ZINC15 and Enamine REAL 
Space databases) against SARS-CoV-2 Mpro (ref. 95). The consecutive 
deep docking runs with the five programmes took approximately 90 
days of computing on 250 GPUs and 640 CPU cores and reduced the 
initial 40-billion-molecule library by 1,500-fold. Importantly, the use 
of 5 docking programmes, combined with ligand structural cluster-
ing and pharmacophore filtering, allowed the authors to develop and 
evaluate 28 individual consensus strategies, 26 of which were fully  
automated and 2 of which involved final examination of generated hit 
lists by a CADD expert. When up to 100 compounds were ordered and 
evaluated for each of the 26 automated hit-selection protocols, some 
reached hit rates of 13%, a respectable performance. Although the two 
strategies involving expert examination clearly outperformed the rest 
by achieving hit rates of 16% and 23%, these results suggest that deep 
docking strategies can already enable fully automated virtual screening 
of ultra-large chemical libraries.

While deep docking offers an exciting opportunity to accelerate 
structure-based drug discovery approaches and the use of consensus 
deep docking improves the results, there are several pitfalls associ-
ated with this approach that we hope will be addressed in the near 
future. Most importantly, deep docking is designed to accelerate the 
process of finding compounds with high docking scores, but it fully  

relies on the current scoring functions used in the docking software,  
and the resulting hit selection is predicated on the choice of software and  
respective scoring function. Thus, deep docking shares all the limi-
tations and pitfalls concerning the accuracy of the current docking 
methods. As these methods improve in their accuracy, so will deep 
docking. Additional improvements may be associated with a more 
intelligent choice of the initial library to generate docking scores (for 
instance, by using structure-based pharmacophores to select com-
pounds for initial docking calculations) as well as with the progress in 
deep learning methods.

Polypharmacology modelling with deep learning
We have already discussed above the use of deep learning in multi- 
objective optimization tasks using ligand bioactivity data14,15. This 
active area of research has recently been expanded with methods for 
multi-objective modelling of docking scores in the context of poly-
pharmacology. For instance, Liu et al.103 proposed joint modelling of 
docking data of new and known targets using multi-task learning and 
demonstrated that such an approach outperforms both single-task 
learning and active learning.

There are emerging examples of the use of deep learning to predict  
protein–ligand interactions104,105, providing opportunities for large- 
scale target profiling for chemicals of interest. Kinome-wide multi-task 
deep neural network models were developed by Li et al.106 using 
~140,000 data points obtained by probing a panel of 391 kinases with 
small molecules. The resulting model allowed the authors to map a 
comprehensive kinome interaction network encompassing a variety 
of on-target and off-target effects. This tool was further developed 
into an online platform, KinomeX107, that can predict kinome-wide 
polypharmacology of compounds based solely on their 2D structures 
enumerated through ECFP4 fingerprints.

While experimental data are limited by nature, the use of emulated 
docking scores could, in principle, be constrained only by the availabil-
ity of computational resources. Moreover, the generation of docking 
scores for training deep learning models would not require any prior 
knowledge of a previously unstudied ‘cold’ target. For instance, the 
authors of a recent study108 implemented a reinforcement learning 
approach that uses docking scores for compounds created by a genera-
tive model for a ‘cold’ target, while starting the training process with 
known ligands of homologous proteins. The authors did not augment 
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Fig. 3 | Workflow for deep docking. Deep docking uses a QSAR model trained 
on docking scores of a portion of an ultra-large docking database of molecules to 
iteratively predict the docking outcomes for the remaining entries. The workflow 
consists of the following major steps. The first step is model training, in which a 
small fraction of a database is randomly sampled and the sampled molecules are 
docked into the target of interest using any conventional protocol. A deep neural 
network model is then trained, correlating Morgan fingerprint descriptors of 
compounds in the sample set to their corresponding docking scores translated 
into a binary form based on a threshold (such as the top 1%). The next step is 

prediction; after the model is trained, the remaining entries in the ultra-large 
database get scored by the QSAR model and all ‘active’ predictions are then 
considered as emulated virtual hits to be added to the training set for the next 
iteration. Subsequently, in a database reduction step, all ‘inactive’ QSAR model 
predictions are removed from the docking base and the workflow is repeated with 
the ‘active or inactive’ threshold becoming more stringent after each iteration. 
These iterations are repeated until convergence; that is, when the number of 
retried virtual hits does not change significantly. The emulated virtual hits, 
scoring favourably within all iterations, are actually docked into the target site.
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their training set with highly scored compounds but the transfer learn-
ing approach enabled them to find potential binders for JAK2 kinase 
when only ligands for the closely related kinases JAK1, JAK3 and TYK2 
were used to initiate the generative model.

The use of deep learning methods not only allows larger parts of 
a chemical space to be processed but also enables large-scale docking 
campaigns on a much broader range of targets. This could lead to a 
notable impact on both structure-based and structure-free models in 
predictive polypharmacology.

Outlook
The combination of the emergence of big data, increases in computa-
tional power and advances in deep learning methods is driving the pro-
gress in CADD described above. Here, we highlight some of the trends  
we expect to continue or to emerge in the coming years.

Expansion of accessible chemical space
The remarkable growth of ‘make-on-demand’ chemical libraries (Box 2) 
has brought unprecedented opportunities for virtual screening but 
also poses tremendous challenges. Virtual screening of such ultra-large 
collections by conventional molecular docking remains practically 
unfeasible due to the associated costs of both software licenses and 
access to high-performance computing. There are only a handful of 
packages that can screen libraries of around a billion compounds, and 
they often rely on their code scalability across supercomputing clusters 
to perform ‘brute force’ virtual screening. For example, the GigaDock-
ing method implemented within the Orion package from OpenEye was 
used to dock the full Enamine REAL database (1.4 billion molecules) to  
two targets (purine nucleoside phosphorylase and heat shock protein 90)  
in less than a day. To do so, the OpenEye team used up to 45,000 
Amazon Web Services CPUs to complete the tasks, corresponding 

Table 1 | Virtual screening approaches using machine learning to predict docking scores

Method Emulated docking 
score

Ligand descriptors QSAR function Ref.

Deep docking Glide SP
Quick Vina2
FRED
GPU-AutoDock
ICM

Morgan fingerprints Deep neural network 95

Pyzer-Knapp approach AutoDock-Vina Extended-connectivity fingerprints Bayesian optimization 138

Jastrzębski et al. approach Glide XP
SMINA

Contact fingerprints Deep neural network 139

MolPal AutoDock-Vina Morgan fingerprints Neural network; random forest; message 
passing neural network

140

Martin approach DOCK Morgan fingerprints Linear regression 141

Lean docking GOLD
AutoDock-Vina
FRED
Glide SP
MOE

Unfolded counted atom pairs fingerprints Regressor model 142

HASTEN Glide SP
FRED

Morgan fingerprints Message passing neural network 143

MEMES AutoDock Extended-connectivity fingerprints; Mol2Vec 
descriptors; CDDDs

Convolutional neural network; recurrent 
neural network

144

Yang et al. approach Glide SP
DOCK 3.7

Morgan fingerprints; molecular graphs Graph-convolutional neural network; 
random forest

145

V-DOCK AutoDock-Vina 2048 RDKit fingerprints combined with 166 bits; 
MACSS fingerprints

PyTorch deep learning library 146

Bucinsky et al. approach AutoDock SOAP molecular descriptors; SchNet 128 bits vectors Keras neural network; deep tensor neural 
network; gradient-boosted trees

147

NeuralDock MedusaDock 36 bits atom type vectors with 7 channels for ligands; 
10 × 10 × 10, 2-angstrom resolution images with  
8 channels for protein pockets

TensorFlow neural network 148

MILCDOCK LeDock
PLANT
Vina
AutoDock 4
rDock

Pose-based RMSD values; metadata from docking 
programmes

Gradient-boosted trees; random forest; 
naive Bayes neural network

149

DOCKSTRING AutoDock-Vina Various fingerprints Regressions; gradient-boosted trees; 
Gaussian processes; graph neural network

150

CDDD, continuous and data-driven descriptors; QSAR, quantitative structure–activity relationship; RMSD, root-mean-square deviation; SOAP, smooth overlap of atomic positions.
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to a staggering ~50 years of continuous computing109. Similarly, the 
AutoDock programme was modified for more effective parallelization 
with GPUs, and the resulting GPU-AutoDock method was used on the 
27,000 GPUs of the Summit supercomputer to process the Enamine 
REAL library against SARS-CoV-2 Mpro in 1 day110. In another large-scale 
study, Gorgulla et al.111 used the VirtualFlow platform with AutoDock to 
screen the Enamine REAL library against KEAP1, an E3 ubiquitin ligase 
substrate adaptor, in 4 weeks using 8,000 CPUs. Venkatraman et al.112 
implemented an end-to-end drug discovery approach called Drug-
Sniffer, which required 40,000 computational hours for the screen-
ing of 3.7 billion molecules against 22 target pockets in SARS-CoV-2  
viral proteins.

These studies represent rare examples of ultra-large-scale distrib-
uted virtual screening campaigns, which are not generally affordable 
for the global research community. While it has been demonstrated 
that the use of larger chemical libraries improves the effectiveness 
of drug discovery113, most reported virtual screening studies rely on 
a few million molecules or less. The dramatic expansion of accessible 
chemical space requires the development of novel approaches to 
virtual screening. Such modern CADD technologies, on the one hand, 
should be able to rank billions of potential ligands against any target of 
interest within a reasonable amount of time, and on the other, should 
enable automated hit-selection strategies that require minimal human 
intervention, especially as automated chemistry labs driven by artificial 
intelligence algorithms are being contemplated and established114. 
Various deep learning-based methodologies discussed above illus-
trate the practicality of hybrid approaches that combine the predic-
tive power of conventional docking with the utility of ligand-based 
QSAR modelling. In our opinion, these advances provide opportunities 
for global democratization of drug discovery owing to their wider 
accessibility and affordability. In particular, deep learning-enabled 
methods of docking and predictive polypharmacology could provide 
affordable means for screening billions of potential drug candidates. 
Furthermore, open-source-enabled and GUI-enabled implementation 
of such methods could make virtual screening of ultra-large chemical 
libraries more accessible.

Deep learning accelerates quantum mechanics calculations
The high computational demands of quantum mechanics calculations 
have traditionally limited their applicability in QSAR modelling and 
CADD in general. Consequently, the development of fast, accurate 
and universal approximations to quantum mechanics has long been 
a focus in computational chemistry that has recently been enriched 
by the use of deep learning approaches.

One type of deep learning-based model that has been developed 
with such a focus is atomistic neural network potentials (NNPs)115,116. 
NNPs can predict energies and other quantum mechanics proper-
ties of molecules, generalizing to the same level of accuracy as 
density-functional theory on a large set of organic molecules while 
being six orders of magnitude faster115,116. Data acquisition for NNPs is 
based on the concept of active learning, which uses the disagreement 
between an ensemble of machine learning potentials to infer the reli-
ability of the ensemble prediction. Active learning allows automatic 
sampling of regions of chemical space where the machine learning 
potential fails to accurately predict the potential energy, thereby reduc-
ing the size of the data set required for training by up to 90% compared 
to naive random sampling techniques117.

Notably, the training process for NNPs is analogous to those used 
to train deep QSAR models, except that the target property, such as 

energy, is computed with full quantum mechanics methods rather than 
measured as in a bioactivity prediction task. While NNPs are fast and 
accurate, the majority do not aim to become universal in their descrip-
tion of chemical interactions, which limits their use in CADD to specific 
molecular systems. However, this limitation has been addressed with 
the breakthrough development of the first universal atomistic NNP for 
organic molecules known as ANI-1 (ref. 118).

The results of ANI-1 and its successors117,119 have been shown to 
approach ‘chemical accuracy’ (errors of ~1 kcal/mol) relative to refer-
ence quantum mechanics data for multiple applications. Even the 
early version of the ANI-1 potential was found to be more accurate 
than semi-empirical and tight-binding quantum mechanics methods 
while being much faster. The model correctly predicted the stability 
of ring-containing structures and captured the large conformational 
changes. Additionally, the potential accurately predicted shape and 
smoothness of the potential energy surface (PES), which is traditionally 
defined by bond stretching, angle bending and torsional rotations. ANI 
models have been actively used as a proxy for quantum mechanics cal-
culations to parametrize custom ligands in general force fields such as 
the general Amber force field120. It has been shown that PESs described 
by the ANI models are practically indistinguishable from PESs obtained 
with quantum mechanics calculations117,119.

Deep learning improves accuracy of ligand binding affinity 
and property calculations
The ANI molecular mechanics scheme has been expanded to predict 
protein–ligand binding free energies121, which represent another target 
property for deep QSAR modelling. Binding free energies of ligands 
can be calculated with molecular dynamics simulations of the protein–
ligand complex using molecular mechanics potential energy of the com-
plex and molecular mechanics and machine learning potential energies 
in a vacuum for the ligand (Fig. 4). The approach has been tested with 
predictions of the binding affinities of kinase inhibitors using ANI-2x 
potential and AMBER14SB/TIP3P force fields. Studies with inhibitors 
for tyrosine-protein kinase 2 (TYK2) from the Schrödinger JACS bench-
mark set122 showed that the machine learning–molecular mechanics 
approach substantially reduced the absolute binding free energy errors 
obtained with molecular mechanics calculations121. While the molecu-
lar mechanics approach led to free energies with a root-mean-square  
error of 0.97 kcal/mol, correcting the molecular mechanics free 
energy with the machine learning–molecular mechanics approach 
improved results to a root-mean-square error of 0.47 kcal/mol. Notably, 
the molecular mechanics to machine learning–molecular mechan-
ics corrections were all positive (up to a magnitude of 4 kcal/mol),  
whereas aliphatic groups with high conformational degrees of freedom 
tend to have larger corrections.

The recently developed AIMNet model has a revised architecture 
that builds on the success of ANI potentials123. The overarching prin-
ciple was inspired by atoms in molecules (AIM) theory124, which states 
that an electron density distribution function can be used to partition a 
molecule into interacting atoms. In the AIMNet model, atoms are char-
acterized by learnable atomic feature vectors to approximate complex 
interatomic interactions instead of electron density. Knowledge inside 
the AIM layer could be exploited to learn new atomic properties without 
effectively retraining the model. For example, following training of the 
AIMNet model to predict the energy, partial atomic charges and atomic 
volumes, the Gibbs free energy of solvation could be predicted with 
an accuracy of 1.8 kcal/mol based on the AIM layer vector only, using 
just 6% of the training data123. Benchmarks for macrocycle conformer 
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generation and ranking indicated that the model is on par with popular 
density-functional theory functionals.

Intriguingly, learned molecular representations enable accurate 
prediction of molecular properties of critical importance for drug 
discovery. A recently developed machine learning model for protein 
pKa values achieved unprecedented accuracy of 0.5 log units for all 
amino acid types125. This model substantially surpassed the accuracy 
of the popular PROPKA method126 and demonstrated the capabilities of 
NNPs to provide pKa parameters that can be used as chemical descrip-
tors in QSAR models or in mechanistic analysis of protein–ligand 
interactions125.

In summary, deep learning methods employed to develop NNPs 
have not only enabled the acceleration of quantum mechanics calcula-
tions but also afforded much higher accuracy in calculating ligand bind-
ing affinity and molecular properties of high importance for CADD. For 
instance, as discussed above, deep docking methods critically depend 
on the quality of scoring functions used in the docking software. Fast and 
accurate NNPs, especially those enabled by the recent AIMNet method, 
promise to improve the accuracy of scoring functions and develop 
novel deep docking approaches as well as molecular simulations  
methods with higher efficiency and accuracy.

Potential impact of quantum computing
Challenges in working with both ultra-large databases and with quan-
tum mechanics calculations127 could also be addressed by a revolution-
ary advance in high-performance computing: quantum computing128,129. 

While conventional computers operate on binary encoded data rep-
resented by discrete states 0 or 1 (bits), quantum computers process 
information based on the laws of quantum mechanics, where quantum 
bits (qubits) can achieve states of 0 and 1 simultaneously. Consequently, 
qubits can exhibit distinct features, including superposition and entan-
glement, that allow quantum computers to manipulate vast amounts 
of information with very few operations, which enables unprecedented 
acceleration of certain computational tasks128.

It is expected that quantum computers will be able to drastically 
outperform conventional processing units in several areas traditionally 
interrelated with CADD, including quantum chemistry computations 
and machine learning127,130. For the former group of approaches, quan-
tum computers should be able to find solutions to the Schrödinger 
equation for large molecular systems, thereby bringing revolution-
ary changes into the development of novel synthetic routes, allowing 
the modelling of metabolic transformations and modes of action 
of covalent drugs, the study of transition states and coordinates of 
enzymatic reactions, the development of quantum chemical descrip-
tors to empower QSAR modelling and the computation of accurate 
thermodynamics of drug–target interactions131, and supporting other 
innovations in pharmaceutical discovery128. For machine learning 
methods, application of quantum computing could play a disruptive 
role as it can vastly outperform conventional supervised and unsuper-
vised methods in both computational efficiency and accuracy130,132. 
For instance, quantum computing techniques implemented on noisy 
intermediate and scale quantum machines already include quantum 
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Fig. 4 | Molecular simulations enhanced by deep 
learning potentials in the calculation of ligand 
binding affinity. Machine learning (ML) potentials 
developed with deep learning approaches (panel a) 
improve the accuracy of calculating protein–ligand 
interaction energies by using a hybrid ML–molecular 
mechanics (MM) scheme (panel b). Calculation  
of the hybrid, higher accuracy ML–MM energy  
UML/MM(XP,XL) for the protein–ligand complex is 
achieved by subtracting the MM energy of the 
ligand in a vacuum and adding the more accurate 
ML energy of the ligand in a vacuum. The net effect 
of this scheme is that the less accurate MM potential 
energy of the ligand is replaced by its higher 
accuracy ML potential. Here, the MM model uses 
the OpenFF small-molecule force field151, while the 
ML model uses ANI-2x119. Details of the algorithm for 
the development of the ANI-type ML potentials are 
described elsewhere121.
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autoencoders, support vector machines, and methods of k-means 
clustering and principal component analysis130. Quantum methods 
implemented on fault-tolerant quantum computing devices include 
restricted Boltzmann machines, Bayesian inference, least-squares 
regression and support vector machines130. There are a growing num-
ber of studies where quantum computing has already been evaluated 
for conventional machine learning or deep learning applications in 
QSAR and CADD, including target discovery, protein folding, target 
site characterization133, generative molecular modelling134, dock-
ing and force field refinement127, lead optimization135, toxicity risk 
assessment136, and molecular matching and similarity searching 
through the chemical space132.

The emergence of hybrid CADD architectures integrating big 
data modelling algorithms into specialized hardware or combining 
classical and task-specific hardware, such as noisy intermediate and 
scale quantum computers or GPU platforms, are growing trends in 
drug discovery. We should expect that components of CADD pipelines 
will be served in the near future by different hybrid models fine-tuned 
for particular cheminformatics applications, empowering CADD by 
enabling dramatically faster computing using much bigger data sets.

Impact on early stage drug discovery
Although it is too early for deep learning methods, and deep QSAR in 
particular, to have enabled the development of approved drugs137, there 
is growing evidence that these methods have accelerated the preclinical 
research stages for small-molecule drug candidates. After 2020, when 
Exscientia announced that its first drug candidate designed by artificial 
intelligence entered a phase I clinical trial, several companies followed 
with similar announcements. Notably, Exscientia reported that it took 
12 months only to complete the exploratory research phase prior to the 
trial. Similarly, Insilico Medicine reported that it took them 30 months 
to develop a novel, artificial intelligence-designed, phase I anti-fibrotic 
clinical candidate, starting with the discovery of a novel target. Both 
companies employ types of deep learning approaches that we have 
discussed in this Perspective in the context of deep QSAR as part of 
their computational platforms. These recent successes suggest that 
the field of deep QSAR is beginning to reach its ‘plateau of productiv-
ity’ in the Gartner hype cycle. Continued development and use of deep 
QSAR methods should increasingly enable accelerated discovery of 
small-molecule drug candidates, which could be especially important 
in the face of novel and often unpredictable threats posed by emerging 
infectious diseases such as COVID-19.

Published online: xx xx xxxx
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